Un aspecto crÃtico para que se conserve la leche es la temperatura de almacenamiento. De manera tradicional se han usado termómetros de mercurio (Mer) para verificar que la temperatura sea la adecuada, pero ahora se han comprado termómetros electrónicos (Rtd) para facilitar el proceso de medición. Sin embargo, se duda de las mediciones de estos nuevos dispositivos. Para aclarar dudas y diagnosticar la situación, durante cinco dÃas se toman mediciones con ambos tipos de termómetros en varios silos (a la misma hora). Los datos para cinco silos se muestran a continuación:
df=read.csv("https://raw.githubusercontent.com/gregoriocer09/D-experimental/main/Prob15Cap4.csv")
df$Silo=factor(df$Silo)
df$Dia=factor(df$Dia)
df$Y=as.double(df$Y)
str(df)
## 'data.frame': 25 obs. of 3 variables:
## $ Silo: Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...
## $ Dia : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
## $ Y : num 2.6 2.8 5 0 2.4 6.4 6.4 2.3 4.2 4 ...
modelo=aov(Y~Silo+Dia,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Silo 4 182.53 45.63 8.091 0.000912 ***
## Dia 4 62.01 15.50 2.749 0.064865 .
## Residuals 16 90.24 5.64
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(Y~Silo,data=df)
boxplot(Y~Dia,data=df)
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Silo + Dia, data = df)
##
## $Silo
## diff lwr upr p adj
## B-A 2.10 -2.5016327 6.7016327 0.6374197
## C-A -3.16 -7.7616327 1.4416327 0.2656259
## D-A 2.18 -2.4216327 6.7816327 0.6057729
## E-A -4.42 -9.0216327 0.1816327 0.0628520
## C-B -5.26 -9.8616327 -0.6583673 0.0212974
## D-B 0.08 -4.5216327 4.6816327 0.9999980
## E-B -6.52 -11.1216327 -1.9183673 0.0039696
## D-C 5.34 0.7383673 9.9416327 0.0191638
## E-C -1.26 -5.8616327 3.3416327 0.9144393
## E-D -6.60 -11.2016327 -1.9983673 0.0035673
##
## $Dia
## diff lwr upr p adj
## 2-1 0.12 -4.481633 4.721633 0.9999897
## 3-1 0.18 -4.421633 4.781633 0.9999479
## 4-1 -2.88 -7.481633 1.721633 0.3478187
## 5-1 -3.32 -7.921633 1.281633 0.2254054
## 3-2 0.06 -4.541633 4.661633 0.9999994
## 4-2 -3.00 -7.601633 1.601633 0.3107739
## 5-2 -3.44 -8.041633 1.161633 0.1984234
## 4-3 -3.06 -7.661633 1.541633 0.2932674
## 5-3 -3.50 -8.101633 1.101633 0.1859252
## 5-4 -0.44 -5.041633 4.161633 0.9982140
plot(tk)
qqnorm(modelo$residuals)
qqline(modelo$residuals)
shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.94816, p-value = 0.2279
df=read.csv("https://raw.githubusercontent.com/gregoriocer09/D-experimental/main/Prob15Cap4-2.csv")
df$Silo=factor(df$Silo)
df$Dia=factor(df$Dia)
df$Y=as.double(df$Y)
str(dt)
## function (x, df, ncp, log = FALSE)
modelo=aov(Y~Silo+Dia,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Silo 4 4.46 1.115 0.690 0.609
## Dia 4 9.76 2.440 1.511 0.246
## Residuals 16 25.84 1.615
boxplot(Y~Silo,data=df)
boxplot(Y~Dia,data=df)
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Silo + Dia, data = df)
##
## $Silo
## diff lwr upr p adj
## B-A 0.9 -1.5624 3.3624 0.7940241
## C-A 0.1 -2.3624 2.5624 0.9999395
## D-A 1.0 -1.4624 3.4624 0.7268563
## E-A 0.2 -2.2624 2.6624 0.9990573
## C-B -0.8 -3.2624 1.6624 0.8536191
## D-B 0.1 -2.3624 2.5624 0.9999395
## E-B -0.7 -3.1624 1.7624 0.9033967
## D-C 0.9 -1.5624 3.3624 0.7940241
## E-C 0.1 -2.3624 2.5624 0.9999395
## E-D -0.8 -3.2624 1.6624 0.8536191
##
## $Dia
## diff lwr upr p adj
## 2-1 0.4 -2.0624 2.8624003 0.9864301
## 3-1 0.1 -2.3624 2.5624003 0.9999395
## 4-1 -1.4 -3.8624 1.0624003 0.4380469
## 5-1 -0.4 -2.8624 2.0624003 0.9864301
## 3-2 -0.3 -2.7624 2.1624003 0.9954349
## 4-2 -1.8 -4.2624 0.6624003 0.2152533
## 5-2 -0.8 -3.2624 1.6624003 0.8536191
## 4-3 -1.5 -3.9624 0.9624003 0.3729211
## 5-3 -0.5 -2.9624 1.9624003 0.9693357
## 5-4 1.0 -1.4624 3.4624003 0.7268563
plot(tk)
qqnorm(modelo$residuals)
qqline(modelo$residuals)
df=read.csv("https://raw.githubusercontent.com/gregoriocer09/D-experimental/main/Prob15Cap4-3.csv")
df$Silo=factor(df$Silo)
df$Dia=factor(df$Dia)
df$Y=as.double(df$Y)
str(df)
## 'data.frame': 25 obs. of 3 variables:
## $ Silo: Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...
## $ Dia : Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...
## $ Y : num 1.4 1.2 0 0.5 0.6 1.4 0.4 0.3 0.2 0 ...
modelo=aov(Y~Silo+Dia,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Silo 4 96.81 24.203 6.660 0.00236 **
## Dia 4 41.96 10.490 2.887 0.05640 .
## Residuals 16 58.15 3.634
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(Y~Silo,data=df)
boxplot(Y~Dia,data=df)
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Silo + Dia, data = df)
##
## $Silo
## diff lwr upr p adj
## B-A -0.28 -3.9738038 3.4138038 0.9992815
## C-A 3.26 -0.4338038 6.9538038 0.0975664
## D-A 0.42 -3.2738038 4.1138038 0.9965009
## E-A 4.62 0.9261962 8.3138038 0.0110343
## C-B 3.54 -0.1538038 7.2338038 0.0636394
## D-B 0.70 -2.9938038 4.3938038 0.9760870
## E-B 4.90 1.2061962 8.5938038 0.0069223
## D-C -2.84 -6.5338038 0.8538038 0.1783452
## E-C 1.36 -2.3338038 5.0538038 0.7897851
## E-D 4.20 0.5061962 7.8938038 0.0220905
##
## $Dia
## diff lwr upr p adj
## 2-1 0.04 -3.65380378 3.733804 0.9999997
## 3-1 -0.72 -4.41380378 2.973804 0.9735221
## 4-1 0.76 -2.93380378 4.453804 0.9678574
## 5-1 3.04 -0.65380378 6.733804 0.1346943
## 3-2 -0.76 -4.45380378 2.933804 0.9678574
## 4-2 0.72 -2.97380378 4.413804 0.9735221
## 5-2 3.00 -0.69380378 6.693804 0.1426179
## 4-3 1.48 -2.21380378 5.173804 0.7361905
## 5-3 3.76 0.06619622 7.453804 0.0450163
## 5-4 2.28 -1.41380378 5.973804 0.3606355
plot(tk)
qqnorm(modelo$residuals)
qqline(modelo$residuals)