library(readr)
library(psych)
library(lme4)
## Loading required package: Matrix
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(ggcorrplot)
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
d <-  read.csv (file.choose()) 

# continuous party
d$partyCont <- NA
d$partyCont[d$demStrength == 1] <- -3
d$partyCont[d$demStrength == 2] <- -2
d$partyCont[d$partyClose== 1] <- -1
d$partyCont[d$partyClose == 3] <- 0
d$partyCont[d$repStrength == 1] <- 3
d$partyCont[d$repStrength == 2] <- 2
d$partyCont[d$partyClose == 2] <- 1


# party factor
d$party_factor <- NA
d$party_factor[d$partyCont < 0] <- 'Democrat'
d$party_factor[d$partyCont == 0] <- 'Independent'
d$party_factor[d$partyCont > 0] <- 'Republican'


## Order of timing var
d$election_timing <- factor(d$election_timing, levels = c('Pre-election', 'During-election','Post-election'))

d$party_factor <- factor(d$party_factor, levels = c('Democrat', 'Republican','Independent'))


### Party Factor

d$pDem_Rep <- NA
d$pDem_Rep[d$party_factor == 'Democrat'] <- -.5
d$pDem_Rep[d$party_factor == 'Independent'] <- 0
d$pDem_Rep[d$party_factor == 'Republican'] <- .5

d$pInd_Not <- NA
d$pInd_Not[d$party_factor == 'Democrat'] <- .33
d$pInd_Not[d$party_factor == 'Independent'] <- -.67
d$pInd_Not[d$party_factor == 'Republican'] <- .33

#dummy codes for party  ID

d$pDemR[d$party_factor == 'Democrat'] <- 0
d$pDemR[d$party_factor == 'Republican'] <- 1
d$pDemR[d$party_factor == 'Independent'] <- 0

d$pDemI[d$party_factor == 'Democrat'] <- 0
d$pDemI[d$party_factor == 'Republican'] <- 0
d$pDemI[d$party_factor == 'Independent'] <- 1


d$pRepD[d$party_factor == 'Democrat'] <- 1
d$pRepD[d$party_factor == 'Republican'] <- 0
d$pRepD[d$party_factor == 'Independent'] <- 0

d$pRepI[d$party_factor == 'Democrat'] <- 0
d$pRepI[d$party_factor == 'Republican'] <- 0
d$pRepI[d$party_factor == 'Independent'] <- 1

d$IndR[d$party_factor == 'Democrat'] <- 0
d$IndR[d$party_factor == 'Republican'] <- 1
d$IndR[d$party_factor == 'Independent'] <- 0

d$IndD[d$party_factor == 'Democrat'] <- 1
d$IndD[d$party_factor == 'Republican'] <- 0
d$IndD[d$party_factor == 'Independent'] <- 0

## negative emotions
d$negEmo <- (d$emotion_1 + d$emotion_3 + d$emotion_8 + d$emotion_9 + d$emotion_10+ d$emotion_12)/5
d$negEmo.c <- d$negEmo - mean(d$negEmo, na.rm = T)


d2 <- d[d$election_timing != "Pre-election",]


### Timing codes
## Contrast
d2$tDur_Post <- NA
d2$tDur_Post[d2$election_timing == 'During-election'] <- -.5
d2$tDur_Post[d2$election_timing == 'Post-election'] <- .5


# Dummy
# Post!
d2$tDurD <- NA
d2$tDurD[d2$election_timing == 'During-election'] <- 0
d2$tDurD[d2$election_timing == 'Post-election'] <- 1

# During!
d2$tPostD <- NA
d2$tPostD[d2$election_timing == 'During-election'] <- 1
d2$tPostD[d2$election_timing == 'Post-election'] <- 0
corr <- data.frame(d$emotion_1)
colnames(corr)[colnames(corr)=="d.emotion_1"] <- "anger"
corr$shame <- d$emotion_3
corr$embarassment <- d$emotion_8
corr$nervousness <- d$emotion_9
corr$distress <- d$emotion_10
corr$irritability <- d$emotion_12

corr2 <- cor(corr, use = "complete.obs")

ggcorrplot(corr2, type = "lower",
   lab = TRUE, title = "correlations")

## negative emotions

main model

negEmotion.m <- lm(negEmo.c ~ (pDem_Rep + pInd_Not) * (tDur_Post), data = d2)
summary(negEmotion.m)
## 
## Call:
## lm(formula = negEmo.c ~ (pDem_Rep + pInd_Not) * (tDur_Post), 
##     data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1378 -1.6304 -0.2304  1.4084  5.2194 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -0.16489    0.06256  -2.636   0.0085 ** 
## pDem_Rep            0.10104    0.12318   0.820   0.4122    
## pInd_Not            0.67655    0.15523   4.358 1.42e-05 ***
## tDur_Post          -0.22545    0.12512  -1.802   0.0718 .  
## pDem_Rep:tDur_Post  1.29459    0.24636   5.255 1.75e-07 ***
## pInd_Not:tDur_Post -0.10508    0.31046  -0.338   0.7351    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.957 on 1208 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.04253,    Adjusted R-squared:  0.03857 
## F-statistic: 10.73 on 5 and 1208 DF,  p-value: 4.123e-10

dummy coded for dem

negEmotion.D <- lm(negEmo.c ~ (pDemR + pDemI) * (tDur_Post), data = d2)
summary(negEmotion.D)
## 
## Call:
## lm(formula = negEmo.c ~ (pDemR + pDemI) * (tDur_Post), data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1378 -1.6304 -0.2304  1.4084  5.2194 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.007849   0.083149   0.094 0.924805    
## pDemR            0.101044   0.123182   0.820 0.412218    
## pDemI           -0.626027   0.164974  -3.795 0.000155 ***
## tDur_Post       -0.907428   0.166298  -5.457 5.88e-08 ***
## pDemR:tDur_Post  1.294592   0.246365   5.255 1.75e-07 ***
## pDemI:tDur_Post  0.752378   0.329948   2.280 0.022764 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.957 on 1208 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.04253,    Adjusted R-squared:  0.03857 
## F-statistic: 10.73 on 5 and 1208 DF,  p-value: 4.123e-10

dummy coded for rep

negEmotion.R <- lm(negEmo.c ~ (pRepD + pRepI) * (tDur_Post), data = d2)
summary(negEmotion.R)
## 
## Call:
## lm(formula = negEmo.c ~ (pRepD + pRepI) * (tDur_Post), data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1378 -1.6304 -0.2304  1.4084  5.2194 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.10889    0.09089   1.198   0.2311    
## pRepD           -0.10104    0.12318  -0.820   0.4122    
## pRepI           -0.72707    0.16901  -4.302 1.83e-05 ***
## tDur_Post        0.38716    0.18177   2.130   0.0334 *  
## pRepD:tDur_Post -1.29459    0.24636  -5.255 1.75e-07 ***
## pRepI:tDur_Post -0.54221    0.33801  -1.604   0.1089    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.957 on 1208 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.04253,    Adjusted R-squared:  0.03857 
## F-statistic: 10.73 on 5 and 1208 DF,  p-value: 4.123e-10

dummy coded for independent

negEmotion.I <- lm(negEmo.c ~ (IndR + IndD) * (tDur_Post), data = d2)
summary(negEmotion.I)
## 
## Call:
## lm(formula = negEmo.c ~ (IndR + IndD) * (tDur_Post), data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1378 -1.6304 -0.2304  1.4084  5.2194 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.6182     0.1425  -4.338 1.55e-05 ***
## IndR             0.7271     0.1690   4.302 1.83e-05 ***
## IndD             0.6260     0.1650   3.795 0.000155 ***
## tDur_Post       -0.1550     0.2850  -0.544 0.586486    
## IndR:tDur_Post   0.5422     0.3380   1.604 0.108946    
## IndD:tDur_Post  -0.7524     0.3299  -2.280 0.022764 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.957 on 1208 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.04253,    Adjusted R-squared:  0.03857 
## F-statistic: 10.73 on 5 and 1208 DF,  p-value: 4.123e-10

means

print("means democrat")
## [1] "means democrat"
dDem <- d2[d2$party_factor == "Democrat",]
mean(dDem$negEmo[dDem$election_timing == "During-election"], na.rm = T)
## [1] 4.337849
mean(dDem$negEmo[dDem$election_timing == "Post-election"], na.rm = T)
## [1] 3.430421
print("means republican")
## [1] "means republican"
dRep <- d2[d2$party_factor == "Republican",]
mean(dRep$negEmo[dRep$election_timing == "During-election"], na.rm = T)
## [1] 3.791597
mean(dRep$negEmo[dRep$election_timing == "Post-election"], na.rm = T)
## [1] 4.178761
print("means independent")
## [1] "means independent"
dInd <- d2[d2$party_factor == "Independent",]
mean(dInd$negEmo[dInd$election_timing == "During-election"], na.rm = T)
## [1] 3.335632
mean(dInd$negEmo[dInd$election_timing == "Post-election"], na.rm = T)
## [1] 3.180583

decomposing anger interaction


Model: Dem vs Rep interegnum There is no sig difference between Dems and Reps during the election, t(1209) = -1.30, p = 0.194.


anger.m <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurD), data = d2)
summary(anger.m)
## 
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurD), data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7345 -1.7217 -0.6295  1.3705  4.4138 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.20523    0.09448  33.923  < 2e-16 ***
## pDem_Rep       -0.23873    0.18349  -1.301    0.194    
## pInd_Not        0.92391    0.23600   3.915 9.55e-05 ***
## tDurD          -0.14125    0.12950  -1.091    0.276    
## pDem_Rep:tDurD  1.25156    0.25531   4.902 1.08e-06 ***
## pInd_Not:tDurD -0.42658    0.32113  -1.328    0.184    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.028 on 1209 degrees of freedom
##   (27 observations deleted due to missingness)
## Multiple R-squared:  0.04703,    Adjusted R-squared:  0.04309 
## F-statistic: 11.93 on 5 and 1209 DF,  p-value: 2.711e-11

Model: Dem vs Rep declared There is a significant difference between Dems and Reps such that Reps are 1.01 units angrier then Dems, t(1209) = 5.71, p<.001.


anger.m <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * (tPostD), data = d2)
summary(anger.m)
## 
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * (tPostD), data = d2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7345 -1.7217 -0.6295  1.3705  4.4138 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.06398    0.08856  34.597  < 2e-16 ***
## pDem_Rep         1.01283    0.17752   5.706 1.46e-08 ***
## pInd_Not         0.49733    0.21778   2.284   0.0226 *  
## tPostD           0.14125    0.12950   1.091   0.2756    
## pDem_Rep:tPostD -1.25156    0.25531  -4.902 1.08e-06 ***
## pInd_Not:tPostD  0.42658    0.32113   1.328   0.1843    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.028 on 1209 degrees of freedom
##   (27 observations deleted due to missingness)
## Multiple R-squared:  0.04703,    Adjusted R-squared:  0.04309 
## F-statistic: 11.93 on 5 and 1209 DF,  p-value: 2.711e-11