#2
loglike = function(lam, sumx = 100, n = 15) #log likelihood function
{
sumx * log(lam) + -n*lam
}
lamvals = seq(.1, 10, by = 0.1) #range of lambda values
llvals = loglike(lamvals) #log likelihood values
plot(lamvals, llvals, type = "l", xlab = expression(lambda), ylab = "log likelihood") #plot of lambda values x log likelihood values

max(llvals) #local maximum
## [1] 89.71075
#3
mod1 = lm(Infant.Mortality ~ Fertility + Agriculture + Examination + Education + Catholic, data = swiss) #model with Agriculture
mod2 = lm(Infant.Mortality ~ Fertility + Examination + Education + Catholic, data = swiss) #model without Agriculture
#a: likelihood ratio test
2*(logLik(mod1)-logLik(mod2))
## 'log Lik.' 0.1996846 (df=7)
#df = 5 - 4 = 1
#We would expect the test statistic to be = 1, but it's actually 0.1997, which favors the smaller model (the one without Agriculture).
#b: Wald test
summary(mod1)
##
## Call:
## lm(formula = Infant.Mortality ~ Fertility + Agriculture + Examination +
## Education + Catholic, data = swiss)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.2512 -1.2860 0.1821 1.6914 6.0937
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.667e+00 5.435e+00 1.595 0.11850
## Fertility 1.510e-01 5.351e-02 2.822 0.00734 **
## Agriculture -1.175e-02 2.812e-02 -0.418 0.67827
## Examination 3.695e-02 9.607e-02 0.385 0.70250
## Education 6.099e-02 8.484e-02 0.719 0.47631
## Catholic 6.711e-05 1.454e-02 0.005 0.99634
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.683 on 41 degrees of freedom
## Multiple R-squared: 0.2439, Adjusted R-squared: 0.1517
## F-statistic: 2.645 on 5 and 41 DF, p-value: 0.03665
#The p-value for Agriculture is > 0.05, so the coefficient for Agriculture isn't significantly different from zero.
#c: F-test/anova
anova(mod2, mod1)
## Analysis of Variance Table
##
## Model 1: Infant.Mortality ~ Fertility + Examination + Education + Catholic
## Model 2: Infant.Mortality ~ Fertility + Agriculture + Examination + Education +
## Catholic
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 42 296.32
## 2 41 295.07 1 1.2563 0.1746 0.6783
#Since the p-value is > 0.05, adding Agriculture to the model doesn't lead to a better fit.
#d: AIC
AIC(mod1)
## [1] 233.7217
AIC(mod2)
## [1] 231.9214
#Since the AIC for mod2 is lower than the AIC for mod1, the model without Agriculture is better than the larger model.
#e: BIC
BIC(mod1)
## [1] 246.6727
BIC(mod2)
## [1] 243.0222
#Since the BIC for mod2 is lower than the BIC for mod1, the model without Agriculture is better than the larger model.
#The results from each of these tests indicate that Agriculture should be dropped from the model.