1. Create a graph of interest in it over time.
psychologist %>%
  get_interest() %>% 
  ggplot(aes(x = date, y = hits)) +
  geom_line() +
theme_minimal() +
  labs(title = "Google searches for 'psychologist' over time")

Here is the graph showing psychologist searches over time

  1. Create a graph of monthly interest in it.
psychologist %>%
  get_interest() %>% 
  mutate(month = month(date)) %>%            # Create a new variable called month
  group_by(month) %>%                        # Combine months across weeks and years
  summarize(hits_per_month = mean(hits)) %>%      # Average number of searches for each month
  ggplot(aes(x = month, y = hits_per_month)) +    # graph it
  geom_line() +
  scale_x_discrete(limits = c(1:12)) +
labs(title = "Internet searches for psychologist over time showing monthly interest, by month")
Continuous limits supplied to discrete scale.
Did you mean `limits = factor(...)` or `scale_*_continuous()`?

Here is the graph showing monthly searches.

  1. Create a datatable of interest by DMA.
psychologist_US <- trendy("psychologist", geo = "US", from = "2015-01-01", to = "2020-01-01")
psychologist_US %>%
  get_interest_dma() %>% 
  datatable()
NA

Here is a datatable of interest by DMA

  1. Compare US vs. Canadian (CA) interest in psychologist by month, and create a line graph.
psychologist_countries <- trendy("psychologist", geo = c("US", "CA"), from = "2015-01-01", to = "2020-01-01")
psychologist_countries %>%
  get_interest() %>% 
  mutate(month = month(date)) %>%          
  group_by(month, geo) %>%                              
  summarize(hits_per_month = mean(hits)) %>%           
  ggplot(aes(x = month, y = hits_per_month, color = geo)) +       
  geom_line() +
  scale_x_discrete(limits = c(1:12)) +
  theme_minimal() +
  labs(title = "Internet searches for 'flu' over time, by country")
`summarise()` has grouped output by 'month'. You can override using the `.groups` argument.
Continuous limits supplied to discrete scale.
Did you mean `limits = factor(...)` or `scale_*_continuous()`?

This is a line graph comparing US and CA searches of psychologist per month.

  1. Compare interest in psychologist to psychiatrist over time, and create a line graph.
psychologist_psychiatrist <- trendy(c("psychologist", "psychiatrist"), geo = "US")
psychologist_psychiatrist %>%
  get_interest() %>%
  ggplot(aes(x= date, y= hits, color= keyword)) +
  geom_line()+
  labs(title = "Internet searches for psychologist and psychiatrist over time")

A line graph comparing psychologist and psychiatrist over time.

  1. Compare interest in psychologist to psychiatrist in google images over time, and create a line graph.
psychologist_psychiatrist_images <- trendy(c("psychologist", "psychiatrist"), gprop = "images")
psychologist_psychiatrist_images %>%
  get_interest() %>% 
  ggplot(aes(x = date, y = hits, color = keyword)) +       
  geom_line() +
  theme_minimal() +
  labs(title = "Google image searches for psychologist and psychiatrist over time")

This is showing the google image searches of psychologist and psychiatrist over time.

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCjEuIENyZWF0ZSBhIGdyYXBoIG9mIGludGVyZXN0IGluIGl0IG92ZXIgdGltZS4KCgpgYGB7cn0KcHN5Y2hvbG9naXN0ICU+JQogIGdldF9pbnRlcmVzdCgpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBkYXRlLCB5ID0gaGl0cykpICsKICBnZW9tX2xpbmUoKSArCnRoZW1lX21pbmltYWwoKSArCiAgbGFicyh0aXRsZSA9ICJHb29nbGUgc2VhcmNoZXMgZm9yICdwc3ljaG9sb2dpc3QnIG92ZXIgdGltZSIpCmBgYAoKSGVyZSBpcyB0aGUgZ3JhcGggc2hvd2luZyBwc3ljaG9sb2dpc3Qgc2VhcmNoZXMgb3ZlciB0aW1lCgoKMi4gQ3JlYXRlIGEgZ3JhcGggb2YgbW9udGhseSBpbnRlcmVzdCBpbiBpdC4KCgpgYGB7cn0KcHN5Y2hvbG9naXN0ICU+JQogIGdldF9pbnRlcmVzdCgpICU+JSAKICBtdXRhdGUobW9udGggPSBtb250aChkYXRlKSkgJT4lICAgICAgICAgICAgIyBDcmVhdGUgYSBuZXcgdmFyaWFibGUgY2FsbGVkIG1vbnRoCiAgZ3JvdXBfYnkobW9udGgpICU+JSAgICAgICAgICAgICAgICAgICAgICAgICMgQ29tYmluZSBtb250aHMgYWNyb3NzIHdlZWtzIGFuZCB5ZWFycwogIHN1bW1hcml6ZShoaXRzX3Blcl9tb250aCA9IG1lYW4oaGl0cykpICU+JSAgICAgICMgQXZlcmFnZSBudW1iZXIgb2Ygc2VhcmNoZXMgZm9yIGVhY2ggbW9udGgKICBnZ3Bsb3QoYWVzKHggPSBtb250aCwgeSA9IGhpdHNfcGVyX21vbnRoKSkgKyAgICAjIGdyYXBoIGl0CiAgZ2VvbV9saW5lKCkgKwogIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygxOjEyKSkgKwpsYWJzKHRpdGxlID0gIkludGVybmV0IHNlYXJjaGVzIGZvciBwc3ljaG9sb2dpc3Qgb3ZlciB0aW1lIHNob3dpbmcgbW9udGhseSBpbnRlcmVzdCwgYnkgbW9udGgiKQpgYGAKSGVyZSBpcyB0aGUgZ3JhcGggc2hvd2luZyBtb250aGx5IHNlYXJjaGVzLiAKCgoKMy4gQ3JlYXRlIGEgZGF0YXRhYmxlIG9mIGludGVyZXN0IGJ5IERNQS4KCmBgYHtyfQpwc3ljaG9sb2dpc3RfVVMgPC0gdHJlbmR5KCJwc3ljaG9sb2dpc3QiLCBnZW8gPSAiVVMiLCBmcm9tID0gIjIwMTUtMDEtMDEiLCB0byA9ICIyMDIwLTAxLTAxIikKYGBgCgpgYGB7cn0KcHN5Y2hvbG9naXN0X1VTICU+JQogIGdldF9pbnRlcmVzdF9kbWEoKSAlPiUgCiAgZGF0YXRhYmxlKCkKCmBgYApIZXJlIGlzIGEgZGF0YXRhYmxlIG9mIGludGVyZXN0IGJ5IERNQQoKCgo0LiBDb21wYXJlIFVTIHZzLiBDYW5hZGlhbiAoQ0EpIGludGVyZXN0IGluIHBzeWNob2xvZ2lzdCBieSBtb250aCwgYW5kIGNyZWF0ZSBhIGxpbmUgZ3JhcGguCgpgYGB7cn0KcHN5Y2hvbG9naXN0X2NvdW50cmllcyA8LSB0cmVuZHkoInBzeWNob2xvZ2lzdCIsIGdlbyA9IGMoIlVTIiwgIkNBIiksIGZyb20gPSAiMjAxNS0wMS0wMSIsIHRvID0gIjIwMjAtMDEtMDEiKQpgYGAKCgpgYGB7cn0KcHN5Y2hvbG9naXN0X2NvdW50cmllcyAlPiUKICBnZXRfaW50ZXJlc3QoKSAlPiUgCiAgbXV0YXRlKG1vbnRoID0gbW9udGgoZGF0ZSkpICU+JSAgICAgICAgICAKICBncm91cF9ieShtb250aCwgZ2VvKSAlPiUgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICBzdW1tYXJpemUoaGl0c19wZXJfbW9udGggPSBtZWFuKGhpdHMpKSAlPiUgICAgICAgICAgIAogIGdncGxvdChhZXMoeCA9IG1vbnRoLCB5ID0gaGl0c19wZXJfbW9udGgsIGNvbG9yID0gZ2VvKSkgKyAgICAgICAKICBnZW9tX2xpbmUoKSArCiAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKDE6MTIpKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHRpdGxlID0gIkludGVybmV0IHNlYXJjaGVzIGZvciAnZmx1JyBvdmVyIHRpbWUsIGJ5IGNvdW50cnkiKQoKYGBgClRoaXMgaXMgYSBsaW5lIGdyYXBoIGNvbXBhcmluZyBVUyBhbmQgQ0Egc2VhcmNoZXMgb2YgcHN5Y2hvbG9naXN0IHBlciBtb250aC4gCgoKNS4gQ29tcGFyZSBpbnRlcmVzdCBpbiBwc3ljaG9sb2dpc3QgdG8gcHN5Y2hpYXRyaXN0IG92ZXIgdGltZSwgYW5kIGNyZWF0ZSBhIGxpbmUgZ3JhcGguCmBgYHtyfQpwc3ljaG9sb2dpc3RfcHN5Y2hpYXRyaXN0IDwtIHRyZW5keShjKCJwc3ljaG9sb2dpc3QiLCAicHN5Y2hpYXRyaXN0IiksIGdlbyA9ICJVUyIpCmBgYAoKCmBgYHtyfQpwc3ljaG9sb2dpc3RfcHN5Y2hpYXRyaXN0ICU+JQogIGdldF9pbnRlcmVzdCgpICU+JQogIGdncGxvdChhZXMoeD0gZGF0ZSwgeT0gaGl0cywgY29sb3I9IGtleXdvcmQpKSArCiAgZ2VvbV9saW5lKCkrCiAgbGFicyh0aXRsZSA9ICJJbnRlcm5ldCBzZWFyY2hlcyBmb3IgcHN5Y2hvbG9naXN0IGFuZCBwc3ljaGlhdHJpc3Qgb3ZlciB0aW1lIikKYGBgCkEgbGluZSBncmFwaCBjb21wYXJpbmcgcHN5Y2hvbG9naXN0IGFuZCBwc3ljaGlhdHJpc3Qgb3ZlciB0aW1lLiAKCgo2LiBDb21wYXJlIGludGVyZXN0IGluIHBzeWNob2xvZ2lzdCB0byBwc3ljaGlhdHJpc3QgaW4gZ29vZ2xlIGltYWdlcyBvdmVyIHRpbWUsIGFuZCBjcmVhdGUgYSBsaW5lIGdyYXBoLiAKYGBge3J9CnBzeWNob2xvZ2lzdF9wc3ljaGlhdHJpc3RfaW1hZ2VzIDwtIHRyZW5keShjKCJwc3ljaG9sb2dpc3QiLCAicHN5Y2hpYXRyaXN0IiksIGdwcm9wID0gImltYWdlcyIpCmBgYAoKCmBgYHtyfQpwc3ljaG9sb2dpc3RfcHN5Y2hpYXRyaXN0X2ltYWdlcyAlPiUKICBnZXRfaW50ZXJlc3QoKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZGF0ZSwgeSA9IGhpdHMsIGNvbG9yID0ga2V5d29yZCkpICsgICAgICAgCiAgZ2VvbV9saW5lKCkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgbGFicyh0aXRsZSA9ICJHb29nbGUgaW1hZ2Ugc2VhcmNoZXMgZm9yIHBzeWNob2xvZ2lzdCBhbmQgcHN5Y2hpYXRyaXN0IG92ZXIgdGltZSIpCgpgYGAKClRoaXMgaXMgc2hvd2luZyB0aGUgZ29vZ2xlIGltYWdlIHNlYXJjaGVzIG9mIHBzeWNob2xvZ2lzdCBhbmQgcHN5Y2hpYXRyaXN0IG92ZXIgdGltZS4gCgoKCgoKCgoKCgoKCgoKCgo=