Retail Sales: Retail (Excluding Food Services) (MRTSMPCSM44000USN)

symbol <-fredr_series_observations(series_id = "MRTSMPCSM44000USN", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,n=12) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
240 2019-12-01 11.3
241 2020-01-01 -20.0
242 2020-02-01 -0.8
243 2020-03-01 3.9
244 2020-04-01 -12.4
245 2020-05-01 22.5
246 2020-06-01 4.3
247 2020-07-01 2.5
248 2020-08-01 -0.7
249 2020-09-01 -2.8
250 2020-10-01 3.8
251 2020-11-01 -0.7
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Monthly",
      y = "Percent Change from Preceding Period",
      title = "Retail Sales: Retail (Excluding Food Services) (MRTSMPCSM44000USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    geom_hline(yintercept = 0,color="red")+
    labs(
      x = "Monthly",
      y = "Percent Change from Preceding Period",
      title = "Retail Sales: Retail (Excluding Food Services) _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Retail Sales: New Car Dealers (MRTSMPCSM44111USN)

symbol <-fredr_series_observations(series_id = "MRTSMPCSM44111USN", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,n=12) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
240 2019-12-01 5.0
241 2020-01-01 -13.0
242 2020-02-01 3.2
243 2020-03-01 -19.9
244 2020-04-01 -15.7
245 2020-05-01 55.1
246 2020-06-01 4.9
247 2020-07-01 3.7
248 2020-08-01 1.7
249 2020-09-01 -0.1
250 2020-10-01 1.8
251 2020-11-01 -9.5
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
   geom_hline(yintercept = 0,color="red")+
    labs(
      x = "Monthly",
      y = "Percent Change from Preceding Period",
      title = " Retail Sales: New Car Dealers (MRTSMPCSM44111USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
   geom_hline(yintercept = 0,color="red")+
    labs(
      x = "Monthly",
      y = "Percent Change from Preceding Period",
      title = "Retail Sales: New Car Dealers (MRTSMPCSM44111USN) _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Retail Sales: Used Car Dealers (MRTSMPCSM44112USN)

symbol <-fredr_series_observations(series_id = "MRTSMPCSM44112USN", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,n=12) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
240 2019-12-01 -7.3
241 2020-01-01 3.5
242 2020-02-01 17.8
243 2020-03-01 -12.2
244 2020-04-01 -31.0
245 2020-05-01 64.4
246 2020-06-01 11.7
247 2020-07-01 3.8
248 2020-08-01 -1.3
249 2020-09-01 -9.2
250 2020-10-01 -1.3
251 2020-11-01 -8.4
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
   geom_hline(yintercept = 0,color="red")+
    labs(
      x = "Monthly",
      y = "Percent Change from Preceding Period",
      title = "Retail Sales: Used Car Dealers (MRTSMPCSM44112USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
   geom_hline(yintercept = 0,color="red")+
    labs(
      x = "Monthly",
      y = "Percent Change from Preceding Period",
      title = "Retail Sales: Used Car Dealers (MRTSMPCSM44112USN) _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Retail Sales: Automotive Parts, Accessories, and Tire Stores (MRTSMPCSM4413USN)

symbol <-fredr_series_observations(series_id = "MRTSMPCSM4413USN", 
      observation_start = as.Date("2019-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,n=12) %>% kable(caption = "Retail Sales: Automotive Parts, Accessories, and Tire Stores") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
Retail Sales: Automotive Parts, Accessories, and Tire Stores
date value
12 2019-12-01 -6.0
13 2020-01-01 0.7
14 2020-02-01 -3.9
15 2020-03-01 3.1
16 2020-04-01 -6.9
17 2020-05-01 21.6
18 2020-06-01 9.2
19 2020-07-01 -0.4
20 2020-08-01 -1.6
21 2020-09-01 -3.9
22 2020-10-01 1.4
23 2020-11-01 -9.1
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
   geom_hline(yintercept = 0,color="red")+
    labs(
      x = "Quarterly",
      y = "Percent Change ",
      title = "Retail Sales: Automotive Parts, Accessories, and Tire Stores (MRTSMPCSM4413USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Retail Sales: Furniture Stores (MRTSMPCSM4421USN)

symbol <-fredr_series_observations(series_id = "MRTSMPCSM4413USN", 
      observation_start = as.Date("2019-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,n=12) %>% kable(caption = "Retail Sales at Furniture Stores") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
Retail Sales at Furniture Stores
date value
12 2019-12-01 -6.0
13 2020-01-01 0.7
14 2020-02-01 -3.9
15 2020-03-01 3.1
16 2020-04-01 -6.9
17 2020-05-01 21.6
18 2020-06-01 9.2
19 2020-07-01 -0.4
20 2020-08-01 -1.6
21 2020-09-01 -3.9
22 2020-10-01 1.4
23 2020-11-01 -9.1
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
   geom_hline(yintercept = 0,color="red")+
    labs(
      x = "Quarterly",
      y = "Percent Change ",
      title = "Retail Sales: Furniture Stores (MRTSMPCSM4421USN)",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Revenue for Outpatient Care Centers, All Establishments (REV6214ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "REV6214ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
42 2019-04-01 37978
43 2019-07-01 37895
44 2019-10-01 39742
45 2020-01-01 37558
46 2020-04-01 33377
47 2020-07-01 36623
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = " Total Revenue for Outpatient Care Centers",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Revenue for Outpatient Care Centers _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Revenue for Ambulatory Health Care Services, All Establishments (REV621ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "REV621ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
42 2019-04-01 272023
43 2019-07-01 272186
44 2019-10-01 282083
45 2020-01-01 268931
46 2020-04-01 229776
47 2020-07-01 269172
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Revenue for Ambulatory Health Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Revenue for Ambulatory Health Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

Total Expense for Child Day Care Services, All Establishments (EXP6244ALLEST144QNSA)

symbol <-fredr_series_observations(series_id = "EXP6244ALLEST144QNSA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2, T, color = "red" ) 
date value
42 2019-04-01 10311
43 2019-07-01 10032
44 2019-10-01 10824
45 2020-01-01 10796
46 2020-04-01 7735
47 2020-07-01 8921
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Child Day Care Services",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
   geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-11-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.04)+ 
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Quarterly",
      y = "Millions of Dollars",
      title = "Total Expense for Child Day Care Services _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
    theme_economist()