library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
## ✓ tibble 3.0.6 ✓ dplyr 1.0.4
## ✓ tidyr 1.1.2 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tinytex)
hatecrimes <- read_csv("hateCrimes2010.csv")
##
## ── Column specification ────────────────────────────────────────────────────────
## cols(
## .default = col_double(),
## County = col_character(),
## `Crime Type` = col_character()
## )
## ℹ Use `spec()` for the full column specifications.
names(hatecrimes) <- tolower(names(hatecrimes))
names(hatecrimes) <- gsub(" ","",names(hatecrimes))
str(hatecrimes)
## spec_tbl_df [423 × 44] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ county : chr [1:423] "Albany" "Albany" "Allegany" "Bronx" ...
## $ year : num [1:423] 2016 2016 2016 2016 2016 ...
## $ crimetype : chr [1:423] "Crimes Against Persons" "Property Crimes" "Property Crimes" "Crimes Against Persons" ...
## $ anti-male : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-female : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-transgender : num [1:423] 0 0 0 4 0 0 0 0 0 0 ...
## $ anti-genderidentityexpression : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-age* : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-white : num [1:423] 0 0 0 1 1 0 0 0 0 0 ...
## $ anti-black : num [1:423] 1 2 1 0 0 1 0 1 0 2 ...
## $ anti-americanindian/alaskannative : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-asian : num [1:423] 0 0 0 0 0 1 0 0 0 0 ...
## $ anti-nativehawaiian/pacificislander : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-multi-racialgroups : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-otherrace : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-jewish : num [1:423] 0 0 0 0 1 0 1 0 0 0 ...
## $ anti-catholic : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-protestant : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-islamic(muslim) : num [1:423] 1 0 0 6 0 0 0 0 1 0 ...
## $ anti-multi-religiousgroups : num [1:423] 0 1 0 0 0 0 0 0 0 0 ...
## $ anti-atheism/agnosticism : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-religiouspracticegenerally : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-otherreligion : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-buddhist : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-easternorthodox(greek,russian,etc.): num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-hindu : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-jehovahswitness : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-mormon : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-otherchristian : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-sikh : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-hispanic : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-arab : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-otherethnicity/nationalorigin : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-non-hispanic* : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-gaymale : num [1:423] 1 0 0 8 0 1 0 0 0 0 ...
## $ anti-gayfemale : num [1:423] 0 0 0 1 0 0 0 0 0 0 ...
## $ anti-gay(maleandfemale) : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-heterosexual : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-bisexual : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-physicaldisability : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-mentaldisability : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ totalincidents : num [1:423] 3 3 1 20 2 3 1 1 1 2 ...
## $ totalvictims : num [1:423] 4 3 1 20 2 3 1 1 1 2 ...
## $ totaloffenders : num [1:423] 3 3 1 25 2 3 1 1 1 2 ...
## - attr(*, "spec")=
## .. cols(
## .. County = col_character(),
## .. Year = col_double(),
## .. `Crime Type` = col_character(),
## .. `Anti-Male` = col_double(),
## .. `Anti-Female` = col_double(),
## .. `Anti-Transgender` = col_double(),
## .. `Anti-Gender Identity Expression` = col_double(),
## .. `Anti-Age*` = col_double(),
## .. `Anti-White` = col_double(),
## .. `Anti-Black` = col_double(),
## .. `Anti-American Indian/Alaskan Native` = col_double(),
## .. `Anti-Asian` = col_double(),
## .. `Anti-Native Hawaiian/Pacific Islander` = col_double(),
## .. `Anti-Multi-Racial Groups` = col_double(),
## .. `Anti-Other Race` = col_double(),
## .. `Anti-Jewish` = col_double(),
## .. `Anti-Catholic` = col_double(),
## .. `Anti-Protestant` = col_double(),
## .. `Anti-Islamic (Muslim)` = col_double(),
## .. `Anti-Multi-Religious Groups` = col_double(),
## .. `Anti-Atheism/Agnosticism` = col_double(),
## .. `Anti-Religious Practice Generally` = col_double(),
## .. `Anti-Other Religion` = col_double(),
## .. `Anti-Buddhist` = col_double(),
## .. `Anti-Eastern Orthodox (Greek, Russian, etc.)` = col_double(),
## .. `Anti-Hindu` = col_double(),
## .. `Anti-Jehovahs Witness` = col_double(),
## .. `Anti-Mormon` = col_double(),
## .. `Anti-Other Christian` = col_double(),
## .. `Anti-Sikh` = col_double(),
## .. `Anti-Hispanic` = col_double(),
## .. `Anti-Arab` = col_double(),
## .. `Anti-Other Ethnicity/National Origin` = col_double(),
## .. `Anti-Non-Hispanic*` = col_double(),
## .. `Anti-Gay Male` = col_double(),
## .. `Anti-Gay Female` = col_double(),
## .. `Anti-Gay (Male and Female)` = col_double(),
## .. `Anti-Heterosexual` = col_double(),
## .. `Anti-Bisexual` = col_double(),
## .. `Anti-Physical Disability` = col_double(),
## .. `Anti-Mental Disability` = col_double(),
## .. `Total Incidents` = col_double(),
## .. `Total Victims` = col_double(),
## .. `Total Offenders` = col_double()
## .. )
summary(hatecrimes)
## county year crimetype anti-male
## Length:423 Min. :2010 Length:423 Min. :0.000000
## Class :character 1st Qu.:2011 Class :character 1st Qu.:0.000000
## Mode :character Median :2013 Mode :character Median :0.000000
## Mean :2013 Mean :0.007092
## 3rd Qu.:2015 3rd Qu.:0.000000
## Max. :2016 Max. :1.000000
## anti-female anti-transgender anti-genderidentityexpression
## Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000 Median :0.00000
## Mean :0.01655 Mean :0.04728 Mean :0.05674
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.00000 Max. :5.00000 Max. :3.00000
## anti-age* anti-white anti-black
## Min. :0.00000 Min. : 0.0000 Min. : 0.000
## 1st Qu.:0.00000 1st Qu.: 0.0000 1st Qu.: 0.000
## Median :0.00000 Median : 0.0000 Median : 1.000
## Mean :0.05201 Mean : 0.3357 Mean : 1.761
## 3rd Qu.:0.00000 3rd Qu.: 0.0000 3rd Qu.: 2.000
## Max. :9.00000 Max. :11.0000 Max. :18.000
## anti-americanindian/alaskannative anti-asian
## Min. :0.000000 Min. :0.0000
## 1st Qu.:0.000000 1st Qu.:0.0000
## Median :0.000000 Median :0.0000
## Mean :0.007092 Mean :0.1773
## 3rd Qu.:0.000000 3rd Qu.:0.0000
## Max. :1.000000 Max. :8.0000
## anti-nativehawaiian/pacificislander anti-multi-racialgroups anti-otherrace
## Min. :0 Min. :0.00000 Min. :0
## 1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
## Median :0 Median :0.00000 Median :0
## Mean :0 Mean :0.08511 Mean :0
## 3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
## Max. :0 Max. :3.00000 Max. :0
## anti-jewish anti-catholic anti-protestant anti-islamic(muslim)
## Min. : 0.000 Min. : 0.0000 Min. :0.00000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.0000 Median :0.00000 Median : 0.0000
## Mean : 3.981 Mean : 0.2695 Mean :0.02364 Mean : 0.4704
## 3rd Qu.: 3.000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
## Max. :82.000 Max. :12.0000 Max. :1.00000 Max. :10.0000
## anti-multi-religiousgroups anti-atheism/agnosticism
## Min. : 0.00000 Min. :0
## 1st Qu.: 0.00000 1st Qu.:0
## Median : 0.00000 Median :0
## Mean : 0.07565 Mean :0
## 3rd Qu.: 0.00000 3rd Qu.:0
## Max. :10.00000 Max. :0
## anti-religiouspracticegenerally anti-otherreligion anti-buddhist
## Min. :0.000000 Min. :0.000 Min. :0
## 1st Qu.:0.000000 1st Qu.:0.000 1st Qu.:0
## Median :0.000000 Median :0.000 Median :0
## Mean :0.007092 Mean :0.104 Mean :0
## 3rd Qu.:0.000000 3rd Qu.:0.000 3rd Qu.:0
## Max. :2.000000 Max. :4.000 Max. :0
## anti-easternorthodox(greek,russian,etc.) anti-hindu
## Min. :0.000000 Min. :0.000000
## 1st Qu.:0.000000 1st Qu.:0.000000
## Median :0.000000 Median :0.000000
## Mean :0.002364 Mean :0.002364
## 3rd Qu.:0.000000 3rd Qu.:0.000000
## Max. :1.000000 Max. :1.000000
## anti-jehovahswitness anti-mormon anti-otherchristian anti-sikh
## Min. :0 Min. :0 Min. :0.00000 Min. :0
## 1st Qu.:0 1st Qu.:0 1st Qu.:0.00000 1st Qu.:0
## Median :0 Median :0 Median :0.00000 Median :0
## Mean :0 Mean :0 Mean :0.01655 Mean :0
## 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00000 3rd Qu.:0
## Max. :0 Max. :0 Max. :3.00000 Max. :0
## anti-hispanic anti-arab anti-otherethnicity/nationalorigin
## Min. : 0.0000 Min. :0.00000 Min. : 0.0000
## 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
## Median : 0.0000 Median :0.00000 Median : 0.0000
## Mean : 0.3735 Mean :0.06619 Mean : 0.2837
## 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
## Max. :17.0000 Max. :2.00000 Max. :19.0000
## anti-non-hispanic* anti-gaymale anti-gayfemale anti-gay(maleandfemale)
## Min. :0 Min. : 0.000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0 1st Qu.: 0.000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0 Median : 0.000 Median :0.0000 Median :0.0000
## Mean :0 Mean : 1.499 Mean :0.2411 Mean :0.1017
## 3rd Qu.:0 3rd Qu.: 1.000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :0 Max. :36.000 Max. :8.0000 Max. :4.0000
## anti-heterosexual anti-bisexual anti-physicaldisability
## Min. :0.000000 Min. :0.000000 Min. :0.00000
## 1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.00000
## Median :0.000000 Median :0.000000 Median :0.00000
## Mean :0.002364 Mean :0.004728 Mean :0.01182
## 3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.00000
## Max. :1.000000 Max. :1.000000 Max. :1.00000
## anti-mentaldisability totalincidents totalvictims totaloffenders
## Min. :0.000000 Min. : 1.00 Min. : 1.00 Min. : 1.00
## 1st Qu.:0.000000 1st Qu.: 1.00 1st Qu.: 1.00 1st Qu.: 1.00
## Median :0.000000 Median : 3.00 Median : 3.00 Median : 3.00
## Mean :0.009456 Mean : 10.09 Mean : 10.48 Mean : 11.77
## 3rd Qu.:0.000000 3rd Qu.: 10.00 3rd Qu.: 10.00 3rd Qu.: 11.00
## Max. :1.000000 Max. :101.00 Max. :106.00 Max. :113.00
hatecrimes2 <- hatecrimes %>%
select(county, year, `anti-black`, 'anti-white', `anti-jewish`, 'anti-catholic','anti-age*','anti-islamic(muslim)', 'anti-gaymale', 'anti-hispanic') %>%
group_by(county, year)
head(hatecrimes2)
## # A tibble: 6 x 10
## # Groups: county, year [4]
## county year `anti-black` `anti-white` `anti-jewish` `anti-catholic`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Albany 2016 1 0 0 0
## 2 Albany 2016 2 0 0 0
## 3 Alleg… 2016 1 0 0 0
## 4 Bronx 2016 0 1 0 0
## 5 Bronx 2016 0 1 1 0
## 6 Broome 2016 1 0 0 0
## # … with 4 more variables: `anti-age*` <dbl>, `anti-islamic(muslim)` <dbl>,
## # `anti-gaymale` <dbl>, `anti-hispanic` <dbl>
dim(hatecrimes2)
## [1] 423 10
summary(hatecrimes2)
## county year anti-black anti-white
## Length:423 Min. :2010 Min. : 0.000 Min. : 0.0000
## Class :character 1st Qu.:2011 1st Qu.: 0.000 1st Qu.: 0.0000
## Mode :character Median :2013 Median : 1.000 Median : 0.0000
## Mean :2013 Mean : 1.761 Mean : 0.3357
## 3rd Qu.:2015 3rd Qu.: 2.000 3rd Qu.: 0.0000
## Max. :2016 Max. :18.000 Max. :11.0000
## anti-jewish anti-catholic anti-age* anti-islamic(muslim)
## Min. : 0.000 Min. : 0.0000 Min. :0.00000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.0000 Median :0.00000 Median : 0.0000
## Mean : 3.981 Mean : 0.2695 Mean :0.05201 Mean : 0.4704
## 3rd Qu.: 3.000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
## Max. :82.000 Max. :12.0000 Max. :9.00000 Max. :10.0000
## anti-gaymale anti-hispanic
## Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.0000
## Mean : 1.499 Mean : 0.3735
## 3rd Qu.: 1.000 3rd Qu.: 0.0000
## Max. :36.000 Max. :17.0000
hatecrimeslong <- hatecrimes2 %>%
tidyr::gather("id", "crimecount", 3:10)
hatecrimesplot <-hatecrimeslong %>%
ggplot(., aes(year, crimecount))+
geom_point()+
aes(color = id)+
facet_wrap(~id)
hatecrimesplot
### Look deeper into crimes against blacks, gay males, and jews
hatenew <- hatecrimeslong %>%
filter( id== "anti-black" | id == "anti-jewish" | id == "anti-gaymale")%>%
group_by(year, county) %>%
arrange(desc(crimecount))
hatenew
## # A tibble: 1,269 x 4
## # Groups: year, county [277]
## county year id crimecount
## <chr> <dbl> <chr> <dbl>
## 1 Kings 2012 anti-jewish 82
## 2 Kings 2016 anti-jewish 51
## 3 Suffolk 2014 anti-jewish 48
## 4 Suffolk 2012 anti-jewish 48
## 5 Kings 2011 anti-jewish 44
## 6 Kings 2013 anti-jewish 41
## 7 Kings 2010 anti-jewish 39
## 8 Nassau 2011 anti-jewish 38
## 9 Suffolk 2013 anti-jewish 37
## 10 Nassau 2016 anti-jewish 36
## # … with 1,259 more rows
plot2 <- hatenew %>%
ggplot() +
geom_bar(aes(x=year, y=crimecount, fill = id),
position = "dodge", stat = "identity") +
ggtitle("Hate Crime Type in NY Counties Between 2010-2016") +
ylab("Number of Hate Crime Incidents") +
labs(fill = "Hate Crime Type")
plot2
### What about the counties?
plot3 <- hatenew %>%
ggplot() +
geom_bar(aes(x=county, y=crimecount, fill = id),
position = "dodge", stat = "identity") +
ggtitle("Hate Crime Type in NY Counties Between 2010-2016") +
ylab("Number of Hate Crime Incidents") +
labs(fill = "Hate Crime Type")
plot3
counties <- hatenew %>%
group_by(county, year)%>%
summarize(sum = sum(crimecount)) %>%
arrange(desc(sum))
## `summarise()` has grouped output by 'county'. You can override using the `.groups` argument.
counties
## # A tibble: 277 x 3
## # Groups: county [60]
## county year sum
## <chr> <dbl> <dbl>
## 1 Kings 2012 136
## 2 Kings 2010 110
## 3 Kings 2016 101
## 4 Kings 2013 96
## 5 Kings 2014 94
## 6 Kings 2015 90
## 7 Kings 2011 86
## 8 New York 2016 86
## 9 Suffolk 2012 83
## 10 New York 2013 75
## # … with 267 more rows
plot4 <- hatenew %>%
filter(county =="Kings" | county =="New York" | county == "Suffolk" | county == "Nassau" | county == "Queens") %>%
ggplot() +
geom_bar(aes(x=county, y=crimecount, fill = id),
position = "dodge", stat = "identity") +
labs(ylab = "Number of Hate Crime Incidents",
title = "5 Counties in NY with Highest Incidents of Hate Crimes",
subtitle = "Between 2010-2016",
fill = "Hate Crime Type")
plot4
nypop <- read_csv("newyorkpopulation.csv")
##
## ── Column specification ────────────────────────────────────────────────────────
## cols(
## Geography = col_character(),
## `2010` = col_double(),
## `2011` = col_double(),
## `2012` = col_double(),
## `2013` = col_double(),
## `2014` = col_double(),
## `2015` = col_double(),
## `2016` = col_double()
## )
nypop$Geography <- gsub(" , New York", "", nypop$Geography)
nypop$Geography <- gsub("County", "", nypop$Geography)
nypoplong <- nypop %>%
rename(county = Geography) %>%
gather("year", "population", 2:8)
nypoplong$year <- as.double(nypoplong$year)
head(nypoplong)
## # A tibble: 6 x 3
## county year population
## <chr> <dbl> <dbl>
## 1 Albany , New York 2010 304078
## 2 Allegany , New York 2010 48949
## 3 Bronx , New York 2010 1388240
## 4 Broome , New York 2010 200469
## 5 Cattaraugus , New York 2010 80249
## 6 Cayuga , New York 2010 79844
nypoplong12 <- nypoplong %>%
filter(year == 2012) %>%
arrange(desc(population)) %>%
head(10)
nypoplong12$county<-gsub(" , New York","",nypoplong12$county)
nypoplong12
## # A tibble: 10 x 3
## county year population
## <chr> <dbl> <dbl>
## 1 Kings 2012 2572282
## 2 Queens 2012 2278024
## 3 New York 2012 1625121
## 4 Suffolk 2012 1499382
## 5 Bronx 2012 1414774
## 6 Nassau 2012 1350748
## 7 Westchester 2012 961073
## 8 Erie 2012 920792
## 9 Monroe 2012 748947
## 10 Richmond 2012 470978
counties12 <- counties %>%
filter(year == 2012) %>%
arrange(desc(sum))
counties12
## # A tibble: 41 x 3
## # Groups: county [41]
## county year sum
## <chr> <dbl> <dbl>
## 1 Kings 2012 136
## 2 Suffolk 2012 83
## 3 New York 2012 71
## 4 Nassau 2012 48
## 5 Queens 2012 48
## 6 Erie 2012 28
## 7 Bronx 2012 23
## 8 Richmond 2012 18
## 9 Multiple 2012 14
## 10 Westchester 2012 13
## # … with 31 more rows
datajoin <- counties12 %>%
full_join(nypoplong12, by=c("county", "year"))
datajoin
## # A tibble: 41 x 4
## # Groups: county [41]
## county year sum population
## <chr> <dbl> <dbl> <dbl>
## 1 Kings 2012 136 2572282
## 2 Suffolk 2012 83 1499382
## 3 New York 2012 71 1625121
## 4 Nassau 2012 48 1350748
## 5 Queens 2012 48 2278024
## 6 Erie 2012 28 920792
## 7 Bronx 2012 23 1414774
## 8 Richmond 2012 18 470978
## 9 Multiple 2012 14 NA
## 10 Westchester 2012 13 961073
## # … with 31 more rows
datajoinrate <- datajoin %>%
mutate(rate = sum/population*100000) %>%
arrange(desc(rate))
datajoinrate
## # A tibble: 41 x 5
## # Groups: county [41]
## county year sum population rate
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Suffolk 2012 83 1499382 5.54
## 2 Kings 2012 136 2572282 5.29
## 3 New York 2012 71 1625121 4.37
## 4 Richmond 2012 18 470978 3.82
## 5 Nassau 2012 48 1350748 3.55
## 6 Erie 2012 28 920792 3.04
## 7 Queens 2012 48 2278024 2.11
## 8 Bronx 2012 23 1414774 1.63
## 9 Westchester 2012 13 961073 1.35
## 10 Monroe 2012 5 748947 0.668
## # … with 31 more rows
dt <- datajoinrate[,c("county","rate")]
dt
## # A tibble: 41 x 2
## # Groups: county [41]
## county rate
## <chr> <dbl>
## 1 Suffolk 5.54
## 2 Kings 5.29
## 3 New York 4.37
## 4 Richmond 3.82
## 5 Nassau 3.55
## 6 Erie 3.04
## 7 Queens 2.11
## 8 Bronx 1.63
## 9 Westchester 1.35
## 10 Monroe 0.668
## # … with 31 more rows
Assignment Part 2
The gatecrime data provided is good to initaila analysis of where the crime is maximum in the NY countiesbut the crie type defined here feels like a real small sample as there are various type of hate crime like physical crime, drunk crime etc. All the anti remark has defined seperately and as boolean which does not really give the picture of the details analysis to be done until few more datasets are combined.
I will really like to do the survey as why there is increase in hate crime by doing some observation and/or collecting some questionare as this dataset only shows the count and not the actual reason as why people get this hate and what provokes their thoughts and I will really like to followup by finding the solution and hopefully implementing the policies to reduce the count. The other thing which I would take into consideration os why the crime rates are not being considered by the government and is the thought process behind it is same in he current year as this dataset is limited till 2016.