Results
## Deleting layer `forArcGIS' using driver `ESRI Shapefile'
## Writing layer `forArcGIS' to data source `../output/forArcGIS.shp' using driver `ESRI Shapefile'
## Writing 9 features with 6 fields and geometry type Point.
Table 1. Greater Capital City (GCC) by support for Daylight Savings Time (DST)
| Greater Brisbane |
70% (88) |
30% (37) |
100% (125) |
| Rest of Qld |
48% (58) |
52% (62) |
100% (120) |
| Greater Sydney |
88% (49) |
12% (7) |
100% (56) |
| Rest of NSW |
84% (74) |
16% (14) |
100% (88) |
| Australian Capital Territory |
80% (16) |
20% (4) |
100% (20) |
| Greater Melbourne |
96% (22) |
4% (1) |
100% (23) |
| Rest of Vic. |
85% (22) |
15% (4) |
100% (26) |
| Greater Hobart |
100% (1) |
0% (0) |
100% (1) |
| Rest of Tas. |
86% (48) |
14% (8) |
100% (56) |
## [1] 0
Table 2. Paired t-test for continuous variables explaining support for Daylight Savings Time (DST)
| age |
43.25 |
43.13 |
0.93 |
|
-0.09 |
| wake_time |
6.33 |
6.11 |
0.13 |
|
-1.51 |
| early_exercise_time |
5.87 |
5.95 |
0.68 |
|
0.42 |
| early_exercise_minutes |
28.77 |
23.04 |
0.51 |
|
-0.66 |
| start_work_time |
8.61 |
8.45 |
0.49 |
|
-0.70 |
| labour_intensive |
55.82 |
54.29 |
0.81 |
|
-0.24 |
| finish_work_time |
16.52 |
16.03 |
0.06 |
* |
-1.87 |
| late_exercise_time |
17.75 |
17.75 |
0.98 |
|
0.02 |
| late_exercise_minutes |
71.58 |
55.75 |
0.26 |
|
-1.14 |
| sleep_time |
19.95 |
19.40 |
0.42 |
|
-0.81 |
| longitude |
150.13 |
150.26 |
0.67 |
|
0.43 |
| latitude |
-32.09 |
-27.73 |
0.00 |
*** |
7.28 |
Table 3. Chi-square test for categorical variables explaining support for Daylight Savings Time (DST)
| female |
no |
78% (43) |
22% (12) |
100% (55) |
0.48 |
|
| female |
yes |
73% (336) |
27% (126) |
100% (462) |
0.48 |
|
| student |
no |
73% (369) |
27% (136) |
100% (505) |
0.64 |
|
| student |
yes |
83% (10) |
17% (2) |
100% (12) |
0.64 |
|
| regular_work_scedule |
no |
71% (232) |
29% (96) |
100% (328) |
0.10 |
* |
| regular_work_scedule |
yes |
78% (147) |
22% (42) |
100% (189) |
0.10 |
* |
| fulltime_employed |
no |
72% (207) |
28% (79) |
100% (286) |
0.67 |
|
| fulltime_employed |
yes |
74% (172) |
26% (59) |
100% (231) |
0.67 |
|
| blue_collar_profession |
no |
73% (341) |
27% (124) |
100% (465) |
1.00 |
|
| blue_collar_profession |
yes |
73% (38) |
27% (14) |
100% (52) |
1.00 |
|
| when_surveyed |
before DST |
74% (182) |
26% (64) |
100% (246) |
0.82 |
|
| when_surveyed |
during DST |
73% (197) |
27% (74) |
100% (271) |
0.82 |
|
| above_tropics |
no |
77% (350) |
23% (104) |
100% (454) |
0.00 |
*** |
| above_tropics |
yes |
46% (28) |
54% (33) |
100% (61) |
0.00 |
*** |
Table 4. Support for Daylight Savings Time (DST) explained by personal and lifestyle characteristics, location, and survey timing with logistic regression [as Log-Odds]
|
|
Personal
|
Lifestyle
|
Location
|
Survey Timing
|
|
Predictors
|
Log-Odds
|
std. Error
|
Log-Odds
|
std. Error
|
Log-Odds
|
std. Error
|
Log-Odds
|
std. Error
|
|
age
|
0.00
|
0.01
|
0.00
|
0.01
|
0.01
|
0.01
|
0.01
|
0.01
|
|
femaleyes
|
-0.32
|
0.35
|
-0.31
|
0.36
|
-0.55
|
0.39
|
-0.55
|
0.39
|
|
studentyes
|
0.80
|
0.79
|
0.79
|
0.82
|
0.38
|
0.87
|
0.38
|
0.87
|
|
regular_work_sceduleyes
|
0.43 *
|
0.25
|
0.42
|
0.26
|
0.42
|
0.28
|
0.42
|
0.28
|
|
fulltime_employedyes
|
-0.05
|
0.24
|
-0.06
|
0.26
|
-0.11
|
0.28
|
-0.12
|
0.28
|
|
blue_collar_professionyes
|
-0.06
|
0.34
|
-0.08
|
0.35
|
-0.12
|
0.37
|
-0.12
|
0.37
|
|
labour_intensive_50pc_or_moreyes
|
0.05
|
0.27
|
0.10
|
0.27
|
0.01
|
0.29
|
0.01
|
0.29
|
|
early_wake_timeyes
|
|
|
-0.12
|
0.30
|
-0.09
|
0.32
|
-0.08
|
0.32
|
|
early_morning_exercise_timeyes
|
|
|
0.21
|
0.53
|
0.67
|
0.55
|
0.68
|
0.55
|
|
early_work_startyes
|
|
|
-0.08
|
0.32
|
-0.04
|
0.34
|
-0.04
|
0.34
|
|
early_work_finishyes
|
|
|
-0.30
|
0.54
|
-0.00
|
0.59
|
-0.01
|
0.59
|
|
early_afternoon_exercise_timeyes
|
|
|
0.45 *
|
0.23
|
0.43 *
|
0.24
|
0.43 *
|
0.24
|
|
early_sleep_timeyes
|
|
|
-0.16
|
0.35
|
-0.22
|
0.38
|
-0.22
|
0.38
|
|
longitude
|
|
|
|
|
0.17 **
|
0.07
|
0.17 **
|
0.07
|
|
latitude
|
|
|
|
|
-0.21 ***
|
0.04
|
-0.21 ***
|
0.04
|
|
above_tropicsyes
|
|
|
|
|
1.42 **
|
0.71
|
1.44 **
|
0.71
|
|
when_surveyedbefore DST
|
|
|
|
|
|
|
-0.05
|
0.22
|
|
Observations
|
515
|
515
|
515
|
515
|
|
R2 Tjur
|
0.010
|
0.020
|
0.138
|
0.138
|
|
AIC
|
607.548
|
614.310
|
561.628
|
563.583
|
- p<0.1 ** p<0.05 *** p<0.01
|
Table 4. Support for Daylight Savings Time (DST) explained by personal and lifestyle characteristics, location, and survey timing with logistic regression [as Odds Ratios]
|
|
Personal
|
Lifestyle
|
Location
|
Survey Timing
|
|
Predictors
|
Odds Ratios
|
std. Error
|
Odds Ratios
|
std. Error
|
Odds Ratios
|
std. Error
|
Odds Ratios
|
std. Error
|
|
age
|
1.00
|
0.01
|
1.00
|
0.01
|
1.01
|
0.01
|
1.01
|
0.01
|
|
femaleyes
|
0.72
|
0.26
|
0.73
|
0.26
|
0.58
|
0.23
|
0.58
|
0.23
|
|
studentyes
|
2.21
|
1.76
|
2.20
|
1.79
|
1.46
|
1.26
|
1.46
|
1.26
|
|
regular_work_sceduleyes
|
1.54 *
|
0.38
|
1.52
|
0.39
|
1.53
|
0.42
|
1.52
|
0.42
|
|
fulltime_employedyes
|
0.95
|
0.23
|
0.94
|
0.24
|
0.89
|
0.25
|
0.89
|
0.25
|
|
blue_collar_professionyes
|
0.94
|
0.32
|
0.92
|
0.32
|
0.89
|
0.33
|
0.89
|
0.33
|
|
labour_intensive_50pc_or_moreyes
|
1.05
|
0.28
|
1.11
|
0.30
|
1.01
|
0.29
|
1.01
|
0.29
|
|
early_wake_timeyes
|
|
|
0.89
|
0.27
|
0.92
|
0.29
|
0.92
|
0.30
|
|
early_morning_exercise_timeyes
|
|
|
1.23
|
0.65
|
1.96
|
1.08
|
1.97
|
1.08
|
|
early_work_startyes
|
|
|
0.92
|
0.29
|
0.96
|
0.33
|
0.96
|
0.33
|
|
early_work_finishyes
|
|
|
0.74
|
0.40
|
1.00
|
0.59
|
0.99
|
0.59
|
|
early_afternoon_exercise_timeyes
|
|
|
1.56 *
|
0.36
|
1.53 *
|
0.37
|
1.54 *
|
0.37
|
|
early_sleep_timeyes
|
|
|
0.85
|
0.30
|
0.80
|
0.30
|
0.80
|
0.30
|
|
longitude
|
|
|
|
|
1.18 **
|
0.08
|
1.18 **
|
0.08
|
|
latitude
|
|
|
|
|
0.81 ***
|
0.03
|
0.81 ***
|
0.03
|
|
above_tropicsyes
|
|
|
|
|
4.13 **
|
2.93
|
4.21 **
|
3.01
|
|
when_surveyedbefore DST
|
|
|
|
|
|
|
0.95
|
0.21
|
|
Observations
|
515
|
515
|
515
|
515
|
|
R2 Tjur
|
0.010
|
0.020
|
0.138
|
0.138
|
|
AIC
|
607.548
|
614.310
|
561.628
|
563.583
|
- p<0.1 ** p<0.05 *** p<0.01
|