Data

Post Office Areas Australian Bureau of Statistics’ datapacks and shape files

Results

## Deleting layer `forArcGIS' using driver `ESRI Shapefile'
## Writing layer `forArcGIS' to data source `../output/forArcGIS.shp' using driver `ESRI Shapefile'
## Writing 9 features with 6 fields and geometry type Point.
Figure 1 Support for Daylight Savings Time by Greater Capital City Statistical Area

Figure 1 Support for Daylight Savings Time by Greater Capital City Statistical Area

Table 1. Greater Capital City (GCC) by support for Daylight Savings Time (DST)
GCC yes no Total
Greater Brisbane 70% (88) 30% (37) 100% (125)
Rest of Qld 48% (58) 52% (62) 100% (120)
Greater Sydney 88% (49) 12% (7) 100% (56)
Rest of NSW 84% (74) 16% (14) 100% (88)
Australian Capital Territory 80% (16) 20% (4) 100% (20)
Greater Melbourne 96% (22) 4% (1) 100% (23)
Rest of Vic. 85% (22) 15% (4) 100% (26)
Greater Hobart 100% (1) 0% (0) 100% (1)
Rest of Tas. 86% (48) 14% (8) 100% (56)
## [1] 0
Table 2. Paired t-test for continuous variables explaining support for Daylight Savings Time (DST)
var yes_mean no_mean p_value stars t_statistic
age 43.25 43.13 0.93 -0.09
wake_time 6.33 6.11 0.13 -1.51
early_exercise_time 5.87 5.95 0.68 0.42
early_exercise_minutes 28.77 23.04 0.51 -0.66
start_work_time 8.61 8.45 0.49 -0.70
labour_intensive 55.82 54.29 0.81 -0.24
finish_work_time 16.52 16.03 0.06 * -1.87
late_exercise_time 17.75 17.75 0.98 0.02
late_exercise_minutes 71.58 55.75 0.26 -1.14
sleep_time 19.95 19.40 0.42 -0.81
longitude 150.13 150.26 0.67 0.43
latitude -32.09 -27.73 0.00 *** 7.28
Table 3. Chi-square test for categorical variables explaining support for Daylight Savings Time (DST)
var lab yes no Total p_value stars
female no 78% (43) 22% (12) 100% (55) 0.48
female yes 73% (336) 27% (126) 100% (462) 0.48
student no 73% (369) 27% (136) 100% (505) 0.64
student yes 83% (10) 17% (2) 100% (12) 0.64
regular_work_scedule no 71% (232) 29% (96) 100% (328) 0.10 *
regular_work_scedule yes 78% (147) 22% (42) 100% (189) 0.10 *
fulltime_employed no 72% (207) 28% (79) 100% (286) 0.67
fulltime_employed yes 74% (172) 26% (59) 100% (231) 0.67
blue_collar_profession no 73% (341) 27% (124) 100% (465) 1.00
blue_collar_profession yes 73% (38) 27% (14) 100% (52) 1.00
when_surveyed before DST 74% (182) 26% (64) 100% (246) 0.82
when_surveyed during DST 73% (197) 27% (74) 100% (271) 0.82
above_tropics no 77% (350) 23% (104) 100% (454) 0.00 ***
above_tropics yes 46% (28) 54% (33) 100% (61) 0.00 ***
Table 4. Support for Daylight Savings Time (DST) explained by personal and lifestyle characteristics, location, and survey timing with logistic regression [as Log-Odds]
  Personal Lifestyle Location Survey Timing
Predictors Log-Odds std. Error Log-Odds std. Error Log-Odds std. Error Log-Odds std. Error
age 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01
femaleyes -0.32 0.35 -0.31 0.36 -0.55 0.39 -0.55 0.39
studentyes 0.80 0.79 0.79 0.82 0.38 0.87 0.38 0.87
regular_work_sceduleyes 0.43 * 0.25 0.42 0.26 0.42 0.28 0.42 0.28
fulltime_employedyes -0.05 0.24 -0.06 0.26 -0.11 0.28 -0.12 0.28
blue_collar_professionyes -0.06 0.34 -0.08 0.35 -0.12 0.37 -0.12 0.37
labour_intensive_50pc_or_moreyes 0.05 0.27 0.10 0.27 0.01 0.29 0.01 0.29
early_wake_timeyes -0.12 0.30 -0.09 0.32 -0.08 0.32
early_morning_exercise_timeyes 0.21 0.53 0.67 0.55 0.68 0.55
early_work_startyes -0.08 0.32 -0.04 0.34 -0.04 0.34
early_work_finishyes -0.30 0.54 -0.00 0.59 -0.01 0.59
early_afternoon_exercise_timeyes 0.45 * 0.23 0.43 * 0.24 0.43 * 0.24
early_sleep_timeyes -0.16 0.35 -0.22 0.38 -0.22 0.38
longitude 0.17 ** 0.07 0.17 ** 0.07
latitude -0.21 *** 0.04 -0.21 *** 0.04
above_tropicsyes 1.42 ** 0.71 1.44 ** 0.71
when_surveyedbefore DST -0.05 0.22
Observations 515 515 515 515
R2 Tjur 0.010 0.020 0.138 0.138
AIC 607.548 614.310 561.628 563.583
  • p<0.1   ** p<0.05   *** p<0.01
Table 4. Support for Daylight Savings Time (DST) explained by personal and lifestyle characteristics, location, and survey timing with logistic regression [as Odds Ratios]
  Personal Lifestyle Location Survey Timing
Predictors Odds Ratios std. Error Odds Ratios std. Error Odds Ratios std. Error Odds Ratios std. Error
age 1.00 0.01 1.00 0.01 1.01 0.01 1.01 0.01
femaleyes 0.72 0.26 0.73 0.26 0.58 0.23 0.58 0.23
studentyes 2.21 1.76 2.20 1.79 1.46 1.26 1.46 1.26
regular_work_sceduleyes 1.54 * 0.38 1.52 0.39 1.53 0.42 1.52 0.42
fulltime_employedyes 0.95 0.23 0.94 0.24 0.89 0.25 0.89 0.25
blue_collar_professionyes 0.94 0.32 0.92 0.32 0.89 0.33 0.89 0.33
labour_intensive_50pc_or_moreyes 1.05 0.28 1.11 0.30 1.01 0.29 1.01 0.29
early_wake_timeyes 0.89 0.27 0.92 0.29 0.92 0.30
early_morning_exercise_timeyes 1.23 0.65 1.96 1.08 1.97 1.08
early_work_startyes 0.92 0.29 0.96 0.33 0.96 0.33
early_work_finishyes 0.74 0.40 1.00 0.59 0.99 0.59
early_afternoon_exercise_timeyes 1.56 * 0.36 1.53 * 0.37 1.54 * 0.37
early_sleep_timeyes 0.85 0.30 0.80 0.30 0.80 0.30
longitude 1.18 ** 0.08 1.18 ** 0.08
latitude 0.81 *** 0.03 0.81 *** 0.03
above_tropicsyes 4.13 ** 2.93 4.21 ** 3.01
when_surveyedbefore DST 0.95 0.21
Observations 515 515 515 515
R2 Tjur 0.010 0.020 0.138 0.138
AIC 607.548 614.310 561.628 563.583
  • p<0.1   ** p<0.05   *** p<0.01