1. This code will collect all of the Google searches under “psychologist”.
psychologist <- trendy("psychologist")

This code creates a line graph of the Google searches for “psychologist”.

psychologist %>%
  get_interest() %>% 
  ggplot(aes(x = date, y = hits)) +
  geom_line() +
  theme_minimal() +
  labs(title = "Google Searches for 'Psychologist' Over Time")

  1. This code creates a line graph showing the monthly Google searches for the term “psychologist”.
psychologist %>%
  get_interest() %>% 
  mutate(month = month(date)) %>%           
  group_by(month) %>%                        
  summarize(hits_per_month = mean(hits)) %>%      
  ggplot(aes(x = month, y = hits_per_month)) +    
  geom_line() +
  scale_x_discrete(limits = c(1:12)) +
  theme_minimal() +
  labs(title = "Google Searches for 'Psychologist' By Month")
Continuous limits supplied to discrete scale.
Did you mean `limits = factor(...)` or `scale_*_continuous()`?

  1. This code creates a data table of Google searches for “psychologist” by DMA, which means Designated Market Area.
psychologist %>%
  get_interest_dma() %>% 
  datatable()

NA
  1. This code collects the data on Google searches for “psychologist” from both the United States and Canada from 2015 to 2020.
psychologist <- trendy("psychologist", geo = c("US", "CA"), from = "2015-01-01", to = "2020-01-01")

This code creates a line graph of the Google searches in each country and compares it by a monthly basis.

psychologist %>%
  get_interest() %>% 
  mutate(month = month(date)) %>%          
  group_by(month, geo) %>%                              
  summarize(hits_per_month = mean(hits)) %>%           
  ggplot(aes(x = month, y = hits_per_month, color = geo)) +       
  geom_line() +
  scale_x_discrete(limits = c(1:12)) +
  theme_minimal() +
  labs(title = "Internet searches for 'Psychologist' By Month and Country")
`summarise()` has grouped output by 'month'. You can override using the `.groups` argument.
Continuous limits supplied to discrete scale.
Did you mean `limits = factor(...)` or `scale_*_continuous()`?

  1. This code collects the data for Google searches for both the term “psychologist” and “psychiatrist”.
psychs <- trendy(c("psychologist", "psychiatrist"))

This creates a line graph of the Google searches between “psychology” and “psychiatrist” and compares them over time.

psychs %>%
  get_interest() %>%
  ggplot(aes(x = date, y = hits, color = keyword)) +
  theme_minimal() +
  geom_line() +
  labs(title = "Searches for 'Psychologist' and 'Psychiatrist' Over Time")

  1. This code gathers the information from Google images for the terms “psychologist” and “psychiatrist”.
psych_images <- trendy(c("psychologist", "psychiatrist"), gprop = "images")

This code organizes the the Google images information into a line graph comparing the two terms over time.

psych_images %>%
  get_interest() %>% 
  ggplot(aes(x = date, y = hits, color = keyword)) +       
  geom_line() +
  theme_minimal() +
  labs(title = "Image Searches for 'Psychologist' and 'Psychiatrist' Over Time")

LS0tDQp0aXRsZTogIkdvb2dsZSBUcmVuZHMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoxLiBUaGlzIGNvZGUgd2lsbCBjb2xsZWN0IGFsbCBvZiB0aGUgR29vZ2xlIHNlYXJjaGVzIHVuZGVyICJwc3ljaG9sb2dpc3QiLiANCg0KYGBge3J9DQpwc3ljaG9sb2dpc3QgPC0gdHJlbmR5KCJwc3ljaG9sb2dpc3QiKQ0KYGBgDQoNCiBUaGlzIGNvZGUgY3JlYXRlcyBhIGxpbmUgZ3JhcGggb2YgdGhlIEdvb2dsZSBzZWFyY2hlcyBmb3IgInBzeWNob2xvZ2lzdCIuIA0KYGBge3J9DQpwc3ljaG9sb2dpc3QgJT4lDQogIGdldF9pbnRlcmVzdCgpICU+JSANCiAgZ2dwbG90KGFlcyh4ID0gZGF0ZSwgeSA9IGhpdHMpKSArDQogIGdlb21fbGluZSgpICsNCiAgdGhlbWVfbWluaW1hbCgpICsNCiAgbGFicyh0aXRsZSA9ICJHb29nbGUgU2VhcmNoZXMgZm9yICdQc3ljaG9sb2dpc3QnIE92ZXIgVGltZSIpDQpgYGANCg0KDQoyLiBUaGlzIGNvZGUgY3JlYXRlcyBhIGxpbmUgZ3JhcGggc2hvd2luZyB0aGUgbW9udGhseSBHb29nbGUgc2VhcmNoZXMgZm9yIHRoZSB0ZXJtICJwc3ljaG9sb2dpc3QiLiANCg0KYGBge3J9DQpwc3ljaG9sb2dpc3QgJT4lDQogIGdldF9pbnRlcmVzdCgpICU+JSANCiAgbXV0YXRlKG1vbnRoID0gbW9udGgoZGF0ZSkpICU+JSAgICAgICAgICAgDQogIGdyb3VwX2J5KG1vbnRoKSAlPiUgICAgICAgICAgICAgICAgICAgICAgICANCiAgc3VtbWFyaXplKGhpdHNfcGVyX21vbnRoID0gbWVhbihoaXRzKSkgJT4lICAgICAgDQogIGdncGxvdChhZXMoeCA9IG1vbnRoLCB5ID0gaGl0c19wZXJfbW9udGgpKSArICAgIA0KICBnZW9tX2xpbmUoKSArDQogIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygxOjEyKSkgKw0KICB0aGVtZV9taW5pbWFsKCkgKw0KICBsYWJzKHRpdGxlID0gIkdvb2dsZSBTZWFyY2hlcyBmb3IgJ1BzeWNob2xvZ2lzdCcgQnkgTW9udGgiKQ0KDQpgYGANCg0KDQozLiBUaGlzIGNvZGUgY3JlYXRlcyBhIGRhdGEgdGFibGUgb2YgR29vZ2xlIHNlYXJjaGVzIGZvciAicHN5Y2hvbG9naXN0IiBieSBETUEsIHdoaWNoIG1lYW5zIERlc2lnbmF0ZWQgTWFya2V0IEFyZWEuDQoNCmBgYHtyfQ0KcHN5Y2hvbG9naXN0ICU+JQ0KICBnZXRfaW50ZXJlc3RfZG1hKCkgJT4lIA0KICBkYXRhdGFibGUoKQ0KDQpgYGANCg0KNC4gVGhpcyBjb2RlIGNvbGxlY3RzIHRoZSBkYXRhIG9uIEdvb2dsZSBzZWFyY2hlcyBmb3IgInBzeWNob2xvZ2lzdCIgZnJvbSBib3RoIHRoZSBVbml0ZWQgU3RhdGVzIGFuZCBDYW5hZGEgZnJvbSAyMDE1IHRvIDIwMjAuIA0KYGBge3J9DQpwc3ljaG9sb2dpc3QgPC0gdHJlbmR5KCJwc3ljaG9sb2dpc3QiLCBnZW8gPSBjKCJVUyIsICJDQSIpLCBmcm9tID0gIjIwMTUtMDEtMDEiLCB0byA9ICIyMDIwLTAxLTAxIikNCmBgYA0KDQpUaGlzIGNvZGUgY3JlYXRlcyBhIGxpbmUgZ3JhcGggb2YgdGhlIEdvb2dsZSBzZWFyY2hlcyBpbiBlYWNoIGNvdW50cnkgYW5kIGNvbXBhcmVzIGl0IGJ5IGEgbW9udGhseSBiYXNpcy4gDQpgYGB7cn0NCnBzeWNob2xvZ2lzdCAlPiUNCiAgZ2V0X2ludGVyZXN0KCkgJT4lIA0KICBtdXRhdGUobW9udGggPSBtb250aChkYXRlKSkgJT4lICAgICAgICAgIA0KICBncm91cF9ieShtb250aCwgZ2VvKSAlPiUgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCiAgc3VtbWFyaXplKGhpdHNfcGVyX21vbnRoID0gbWVhbihoaXRzKSkgJT4lICAgICAgICAgICANCiAgZ2dwbG90KGFlcyh4ID0gbW9udGgsIHkgPSBoaXRzX3Blcl9tb250aCwgY29sb3IgPSBnZW8pKSArICAgICAgIA0KICBnZW9tX2xpbmUoKSArDQogIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygxOjEyKSkgKw0KICB0aGVtZV9taW5pbWFsKCkgKw0KICBsYWJzKHRpdGxlID0gIkludGVybmV0IHNlYXJjaGVzIGZvciAnUHN5Y2hvbG9naXN0JyBCeSBNb250aCBhbmQgQ291bnRyeSIpDQoNCmBgYA0KDQo1LiBUaGlzIGNvZGUgY29sbGVjdHMgdGhlIGRhdGEgZm9yIEdvb2dsZSBzZWFyY2hlcyBmb3IgYm90aCB0aGUgdGVybSAicHN5Y2hvbG9naXN0IiBhbmQgInBzeWNoaWF0cmlzdCIuIA0KYGBge3J9DQpwc3ljaHMgPC0gdHJlbmR5KGMoInBzeWNob2xvZ2lzdCIsICJwc3ljaGlhdHJpc3QiKSkNCmBgYA0KDQpUaGlzIGNyZWF0ZXMgYSBsaW5lIGdyYXBoIG9mIHRoZSBHb29nbGUgc2VhcmNoZXMgYmV0d2VlbiAicHN5Y2hvbG9neSIgYW5kICJwc3ljaGlhdHJpc3QiIGFuZCBjb21wYXJlcyB0aGVtIG92ZXIgdGltZS4gDQpgYGB7cn0NCnBzeWNocyAlPiUNCiAgZ2V0X2ludGVyZXN0KCkgJT4lDQogIGdncGxvdChhZXMoeCA9IGRhdGUsIHkgPSBoaXRzLCBjb2xvciA9IGtleXdvcmQpKSArDQogIHRoZW1lX21pbmltYWwoKSArDQogIGdlb21fbGluZSgpICsNCiAgbGFicyh0aXRsZSA9ICJTZWFyY2hlcyBmb3IgJ1BzeWNob2xvZ2lzdCcgYW5kICdQc3ljaGlhdHJpc3QnIE92ZXIgVGltZSIpDQpgYGANCg0KNi4gVGhpcyBjb2RlIGdhdGhlcnMgdGhlIGluZm9ybWF0aW9uIGZyb20gR29vZ2xlIGltYWdlcyBmb3IgdGhlIHRlcm1zICJwc3ljaG9sb2dpc3QiIGFuZCAicHN5Y2hpYXRyaXN0Ii4gDQpgYGB7cn0NCnBzeWNoX2ltYWdlcyA8LSB0cmVuZHkoYygicHN5Y2hvbG9naXN0IiwgInBzeWNoaWF0cmlzdCIpLCBncHJvcCA9ICJpbWFnZXMiKQ0KYGBgDQoNClRoaXMgY29kZSBvcmdhbml6ZXMgdGhlIHRoZSBHb29nbGUgaW1hZ2VzIGluZm9ybWF0aW9uIGludG8gYSBsaW5lIGdyYXBoIGNvbXBhcmluZyB0aGUgdHdvIHRlcm1zIG92ZXIgdGltZS4gDQpgYGB7cn0NCnBzeWNoX2ltYWdlcyAlPiUNCiAgZ2V0X2ludGVyZXN0KCkgJT4lIA0KICBnZ3Bsb3QoYWVzKHggPSBkYXRlLCB5ID0gaGl0cywgY29sb3IgPSBrZXl3b3JkKSkgKyAgICAgICANCiAgZ2VvbV9saW5lKCkgKw0KICB0aGVtZV9taW5pbWFsKCkgKw0KICBsYWJzKHRpdGxlID0gIkltYWdlIFNlYXJjaGVzIGZvciAnUHN5Y2hvbG9naXN0JyBhbmQgJ1BzeWNoaWF0cmlzdCcgT3ZlciBUaW1lIikNCg0KYGBgDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==