Hate Crime Dataset

This dataset looks at all types of hate crimes in New York counties by the type of hate crime from 2010 to 2016.

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.0.6     v dplyr   1.0.3
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(tinytex)
getwd()
## [1] "C:/Users/small/Desktop/MCollege/2021/DATA110/week3"
setwd("C:/Users/small/Desktop/MCollege/2021/DATA110/Datasets")
hatecrimes <- read_csv("hateCrimes2010.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   County = col_character(),
##   `Crime Type` = col_character()
## )
## i Use `spec()` for the full column specifications.

Clean up the data

We make all headers lowercase and remove spaces.

names(hatecrimes) <- tolower(names(hatecrimes))
names(hatecrimes) <- gsub(" ","",names(hatecrimes))
str(hatecrimes)
## spec_tbl_df [423 x 44] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ county                                  : chr [1:423] "Albany" "Albany" "Allegany" "Bronx" ...
##  $ year                                    : num [1:423] 2016 2016 2016 2016 2016 ...
##  $ crimetype                               : chr [1:423] "Crimes Against Persons" "Property Crimes" "Property Crimes" "Crimes Against Persons" ...
##  $ anti-male                               : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-female                             : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-transgender                        : num [1:423] 0 0 0 4 0 0 0 0 0 0 ...
##  $ anti-genderidentityexpression           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-age*                               : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-white                              : num [1:423] 0 0 0 1 1 0 0 0 0 0 ...
##  $ anti-black                              : num [1:423] 1 2 1 0 0 1 0 1 0 2 ...
##  $ anti-americanindian/alaskannative       : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-asian                              : num [1:423] 0 0 0 0 0 1 0 0 0 0 ...
##  $ anti-nativehawaiian/pacificislander     : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-multi-racialgroups                 : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-otherrace                          : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-jewish                             : num [1:423] 0 0 0 0 1 0 1 0 0 0 ...
##  $ anti-catholic                           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-protestant                         : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-islamic(muslim)                    : num [1:423] 1 0 0 6 0 0 0 0 1 0 ...
##  $ anti-multi-religiousgroups              : num [1:423] 0 1 0 0 0 0 0 0 0 0 ...
##  $ anti-atheism/agnosticism                : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-religiouspracticegenerally         : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-otherreligion                      : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-buddhist                           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-easternorthodox(greek,russian,etc.): num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-hindu                              : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-jehovahswitness                    : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-mormon                             : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-otherchristian                     : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-sikh                               : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-hispanic                           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-arab                               : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-otherethnicity/nationalorigin      : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-non-hispanic*                      : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-gaymale                            : num [1:423] 1 0 0 8 0 1 0 0 0 0 ...
##  $ anti-gayfemale                          : num [1:423] 0 0 0 1 0 0 0 0 0 0 ...
##  $ anti-gay(maleandfemale)                 : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-heterosexual                       : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-bisexual                           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-physicaldisability                 : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-mentaldisability                   : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ totalincidents                          : num [1:423] 3 3 1 20 2 3 1 1 1 2 ...
##  $ totalvictims                            : num [1:423] 4 3 1 20 2 3 1 1 1 2 ...
##  $ totaloffenders                          : num [1:423] 3 3 1 25 2 3 1 1 1 2 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   County = col_character(),
##   ..   Year = col_double(),
##   ..   `Crime Type` = col_character(),
##   ..   `Anti-Male` = col_double(),
##   ..   `Anti-Female` = col_double(),
##   ..   `Anti-Transgender` = col_double(),
##   ..   `Anti-Gender Identity Expression` = col_double(),
##   ..   `Anti-Age*` = col_double(),
##   ..   `Anti-White` = col_double(),
##   ..   `Anti-Black` = col_double(),
##   ..   `Anti-American Indian/Alaskan Native` = col_double(),
##   ..   `Anti-Asian` = col_double(),
##   ..   `Anti-Native Hawaiian/Pacific Islander` = col_double(),
##   ..   `Anti-Multi-Racial Groups` = col_double(),
##   ..   `Anti-Other Race` = col_double(),
##   ..   `Anti-Jewish` = col_double(),
##   ..   `Anti-Catholic` = col_double(),
##   ..   `Anti-Protestant` = col_double(),
##   ..   `Anti-Islamic (Muslim)` = col_double(),
##   ..   `Anti-Multi-Religious Groups` = col_double(),
##   ..   `Anti-Atheism/Agnosticism` = col_double(),
##   ..   `Anti-Religious Practice Generally` = col_double(),
##   ..   `Anti-Other Religion` = col_double(),
##   ..   `Anti-Buddhist` = col_double(),
##   ..   `Anti-Eastern Orthodox (Greek, Russian, etc.)` = col_double(),
##   ..   `Anti-Hindu` = col_double(),
##   ..   `Anti-Jehovahs Witness` = col_double(),
##   ..   `Anti-Mormon` = col_double(),
##   ..   `Anti-Other Christian` = col_double(),
##   ..   `Anti-Sikh` = col_double(),
##   ..   `Anti-Hispanic` = col_double(),
##   ..   `Anti-Arab` = col_double(),
##   ..   `Anti-Other Ethnicity/National Origin` = col_double(),
##   ..   `Anti-Non-Hispanic*` = col_double(),
##   ..   `Anti-Gay Male` = col_double(),
##   ..   `Anti-Gay Female` = col_double(),
##   ..   `Anti-Gay (Male and Female)` = col_double(),
##   ..   `Anti-Heterosexual` = col_double(),
##   ..   `Anti-Bisexual` = col_double(),
##   ..   `Anti-Physical Disability` = col_double(),
##   ..   `Anti-Mental Disability` = col_double(),
##   ..   `Total Incidents` = col_double(),
##   ..   `Total Victims` = col_double(),
##   ..   `Total Offenders` = col_double()
##   .. )

Select only certain hate-crimes

Here is hate-crime types with a max number or 9 or more to focus on the most prominent types.

hatecrimes2 <- hatecrimes %>% 
  select(county, year, `anti-black`, 'anti-white', `anti-jewish`, 'anti-catholic','anti-age*','anti-islamic(muslim)', 'anti-gaymale', 'anti-hispanic') %>%
  group_by(county, year)
head(hatecrimes2)
## # A tibble: 6 x 10
## # Groups:   county, year [4]
##   county  year `anti-black` `anti-white` `anti-jewish` `anti-catholic`
##   <chr>  <dbl>        <dbl>        <dbl>         <dbl>           <dbl>
## 1 Albany  2016            1            0             0               0
## 2 Albany  2016            2            0             0               0
## 3 Alleg~  2016            1            0             0               0
## 4 Bronx   2016            0            1             0               0
## 5 Bronx   2016            0            1             1               0
## 6 Broome  2016            1            0             0               0
## # ... with 4 more variables: `anti-age*` <dbl>, `anti-islamic(muslim)` <dbl>,
## #   `anti-gaymale` <dbl>, `anti-hispanic` <dbl>

Check the dimensions and the summary to make sure no missing values

dim(hatecrimes2)
## [1] 423  10
summary(hatecrimes2)
##     county               year        anti-black       anti-white     
##  Length:423         Min.   :2010   Min.   : 0.000   Min.   : 0.0000  
##  Class :character   1st Qu.:2011   1st Qu.: 0.000   1st Qu.: 0.0000  
##  Mode  :character   Median :2013   Median : 1.000   Median : 0.0000  
##                     Mean   :2013   Mean   : 1.761   Mean   : 0.3357  
##                     3rd Qu.:2015   3rd Qu.: 2.000   3rd Qu.: 0.0000  
##                     Max.   :2016   Max.   :18.000   Max.   :11.0000  
##   anti-jewish     anti-catholic       anti-age*       anti-islamic(muslim)
##  Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
##  1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
##  Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
##  Mean   : 3.981   Mean   : 0.2695   Mean   :0.05201   Mean   : 0.4704     
##  3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
##  Max.   :82.000   Max.   :12.0000   Max.   :9.00000   Max.   :10.0000     
##   anti-gaymale    anti-hispanic    
##  Min.   : 0.000   Min.   : 0.0000  
##  1st Qu.: 0.000   1st Qu.: 0.0000  
##  Median : 0.000   Median : 0.0000  
##  Mean   : 1.499   Mean   : 0.3735  
##  3rd Qu.: 1.000   3rd Qu.: 0.0000  
##  Max.   :36.000   Max.   :17.0000

Use Facet_Wrap

We look at each set of hate-crimes for each type for each year.

hatecrimeslong <- hatecrimes2 %>% 
  tidyr::gather("id", "crimecount", 3:10) 

hatecrimesplot <-hatecrimeslong %>% 
  ggplot(., aes(year, crimecount))+
  geom_point()+
  aes(color = id)+
  facet_wrap(~id)
hatecrimesplot

Look deeper into crimes against blacks, gay males, and jews

From the facet_wrap plot above, three categories seem to have highest rates of offenses reported.

hatenew <- hatecrimeslong %>%
  filter( id== "anti-black" | id == "anti-jewish" | id == "anti-gaymale")%>%
  group_by(year, county) %>%
  arrange(desc(crimecount))
hatenew
## # A tibble: 1,269 x 4
## # Groups:   year, county [277]
##    county   year id          crimecount
##    <chr>   <dbl> <chr>            <dbl>
##  1 Kings    2012 anti-jewish         82
##  2 Kings    2016 anti-jewish         51
##  3 Suffolk  2014 anti-jewish         48
##  4 Suffolk  2012 anti-jewish         48
##  5 Kings    2011 anti-jewish         44
##  6 Kings    2013 anti-jewish         41
##  7 Kings    2010 anti-jewish         39
##  8 Nassau   2011 anti-jewish         38
##  9 Suffolk  2013 anti-jewish         37
## 10 Nassau   2016 anti-jewish         36
## # ... with 1,259 more rows

Plot these three types of hate crimes together

plot2 <- hatenew %>%
  ggplot() +
  geom_bar(aes(x=year, y=crimecount, fill = id),
      position = "dodge", stat = "identity") +
  ggtitle("Hate Crime Type in NY Counties Between 2010-2016") +
  ylab("Number of Hate Crime Incidents") + 
  labs(fill = "Hate Crime Type")
plot2

We can see that hate crimes against jews spiked in 2012. All other years were relatively consistent with a slight upward trend. There was also an upward trend in hate crimes against gay males. Finally, there appears to be a downward trend in hate crimes against blacks during this period.

What about the counties?

plot3 <- hatenew %>%
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = id),
      position = "dodge", stat = "identity") +
  ggtitle("Hate Crime Type in NY Counties Between 2010-2016") +
  ylab("Number of Hate Crime Incidents") + 
  labs(fill = "Hate Crime Type")
plot3

So many counties

We can just look at the 5 counties with the highest number of incidents.

counties <- hatenew %>%
  group_by(county, year)%>%
  summarize(sum = sum(crimecount)) %>%
  arrange(desc(sum)) 
## `summarise()` has grouped output by 'county'. You can override using the `.groups` argument.
counties
## # A tibble: 277 x 3
## # Groups:   county [60]
##    county    year   sum
##    <chr>    <dbl> <dbl>
##  1 Kings     2012   136
##  2 Kings     2010   110
##  3 Kings     2016   101
##  4 Kings     2013    96
##  5 Kings     2014    94
##  6 Kings     2015    90
##  7 Kings     2011    86
##  8 New York  2016    86
##  9 Suffolk   2012    83
## 10 New York  2013    75
## # ... with 267 more rows
plot4 <- hatenew %>%
  filter(county =="Kings" | county =="New York" | county == "Suffolk" | county == "Nassau" | county == "Queens") %>%
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = id),
      position = "dodge", stat = "identity") +
  labs(ylab = "Number of Hate Crime Incidents",
    title = "5 Counties in NY with Highest Incidents of Hate Crimes",
    subtitle = "Between 2010-2016", 
    fill = "Hate Crime Type")
plot4

How would calculations be affected by looking at hate crimes in counties per year by population densities?

Here is census data for populations of New York counties.

setwd("C:/Users/small/Desktop/MCollege/2021/DATA110/Datasets")
nypop <- read_csv("newyorkpopulation.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   Geography = col_character(),
##   `2010` = col_double(),
##   `2011` = col_double(),
##   `2012` = col_double(),
##   `2013` = col_double(),
##   `2014` = col_double(),
##   `2015` = col_double(),
##   `2016` = col_double()
## )

Clean the county name to match the other dataset

We rename the variable “Geography” as “county” so that it matches in the other dataset.

nypop$Geography <- gsub(" , New York", "", nypop$Geography)
nypop$Geography <- gsub("County", "", nypop$Geography)
nypoplong <- nypop %>%
  rename(county = Geography) %>%
  gather("year", "population", 2:8) 
nypoplong$year <- as.double(nypoplong$year)
head(nypoplong)
## # A tibble: 6 x 3
##   county                  year population
##   <chr>                  <dbl>      <dbl>
## 1 Albany , New York       2010     304078
## 2 Allegany , New York     2010      48949
## 3 Bronx , New York        2010    1388240
## 4 Broome , New York       2010     200469
## 5 Cattaraugus , New York  2010      80249
## 6 Cayuga , New York       2010      79844

Focus on 2012

Since 2012 had the highest counts of hate crimes, let’s look at the populations of the counties in 2012.

nypoplong12 <- nypoplong %>%
  filter(year == 2012) %>%
  arrange(desc(population)) %>%
  head(10)
nypoplong12$county<-gsub(" , New York","",nypoplong12$county)
nypoplong12
## # A tibble: 10 x 3
##    county       year population
##    <chr>       <dbl>      <dbl>
##  1 Kings        2012    2572282
##  2 Queens       2012    2278024
##  3 New York     2012    1625121
##  4 Suffolk      2012    1499382
##  5 Bronx        2012    1414774
##  6 Nassau       2012    1350748
##  7 Westchester  2012     961073
##  8 Erie         2012     920792
##  9 Monroe       2012     748947
## 10 Richmond     2012     470978

Not surprisingly, 4/5 of the counties with the highest populations also were listed in the counties with the highest number of hate crimes.

Filter hate crimes just for 2012 as well

counties12 <- counties %>%
  filter(year == 2012) %>%
  arrange(desc(sum)) 
counties12
## # A tibble: 41 x 3
## # Groups:   county [41]
##    county       year   sum
##    <chr>       <dbl> <dbl>
##  1 Kings        2012   136
##  2 Suffolk      2012    83
##  3 New York     2012    71
##  4 Nassau       2012    48
##  5 Queens       2012    48
##  6 Erie         2012    28
##  7 Bronx        2012    23
##  8 Richmond     2012    18
##  9 Multiple     2012    14
## 10 Westchester  2012    13
## # ... with 31 more rows

Join the Hate Crimes data with NY population data for 2012

datajoin <- counties12 %>%
  full_join(nypoplong12, by=c("county", "year"))
datajoin
## # A tibble: 41 x 4
## # Groups:   county [41]
##    county       year   sum population
##    <chr>       <dbl> <dbl>      <dbl>
##  1 Kings        2012   136    2572282
##  2 Suffolk      2012    83    1499382
##  3 New York     2012    71    1625121
##  4 Nassau       2012    48    1350748
##  5 Queens       2012    48    2278024
##  6 Erie         2012    28     920792
##  7 Bronx        2012    23    1414774
##  8 Richmond     2012    18     470978
##  9 Multiple     2012    14         NA
## 10 Westchester  2012    13     961073
## # ... with 31 more rows

Calculate the rate of incidents per 100,000. Then arrange in descending order

datajoinrate <- datajoin %>%
  mutate(rate = sum/population*100000) %>%
  arrange(desc(rate))
datajoinrate
## # A tibble: 41 x 5
## # Groups:   county [41]
##    county       year   sum population  rate
##    <chr>       <dbl> <dbl>      <dbl> <dbl>
##  1 Suffolk      2012    83    1499382 5.54 
##  2 Kings        2012   136    2572282 5.29 
##  3 New York     2012    71    1625121 4.37 
##  4 Richmond     2012    18     470978 3.82 
##  5 Nassau       2012    48    1350748 3.55 
##  6 Erie         2012    28     920792 3.04 
##  7 Queens       2012    48    2278024 2.11 
##  8 Bronx        2012    23    1414774 1.63 
##  9 Westchester  2012    13     961073 1.35 
## 10 Monroe       2012     5     748947 0.668
## # ... with 31 more rows
dt <- datajoinrate[,c("county","rate")]
dt
## # A tibble: 41 x 2
## # Groups:   county [41]
##    county       rate
##    <chr>       <dbl>
##  1 Suffolk     5.54 
##  2 Kings       5.29 
##  3 New York    4.37 
##  4 Richmond    3.82 
##  5 Nassau      3.55 
##  6 Erie        3.04 
##  7 Queens      2.11 
##  8 Bronx       1.63 
##  9 Westchester 1.35 
## 10 Monroe      0.668
## # ... with 31 more rows

Homework Assissment

The positive aspect of the dataset “Hate Crimes” is it includes many variables such as counties, time, types of crime, and demographics of victims against whom crimes were committed. All these variables give a wide spectrum of types of data and may potentially lead to informative and thorough reports. The negative aspect of this dataset is that data was collected incompletely. If some counties ’officials provide uncompleted data, the lack of information will lead to distortions in all reports.

I would like to compare the New-York dataset with other datasets from big cities in terms of crime at the same time period. The second path might be the studying of crime against the Jewish community deeply. It might be comparing numbers of anti-Jewish crime in New York with other cities.

My follow-up would depend on the results that I get. As an option, I would study different socio-economic impacts of crime in New-York (migration, changing in house prices, labor market, changes in Jewish community, etc.)