Question 1
- The carbon monoxide in cigarettes is thought to be hazardous to the fetus of a pregnant woman who smokes. In a study of this hypothesis, blood was drawn from pregnant women before and after smoking a cigarette. Measurements were made of the percent increase of blood hemoglobin bound to carbon monoxide (COHb). The results for 26 women are: 6.4 2.6 3.5 2.9 3.9 2.2 5.5 4.4 3.5 3.2 2.8 2.4 3.5 3.3 3.7 2.6 3.5 4.5 4.2 2.9 3.1 3.3 4.3 2.6 4.1 3.7
i_COHb <- c("6.4", "2.6","3.5", "2.9","3.9","2.2", "5.5", "4.4", "3.5", "3.2", "2.8", "2.4", "3.5", "3.3", "3.7", "2.6", "3.5", "4.5", "4.2", "2.9","3.1", "3.3", "4.3","2.6","4.1","3.7")
df <-data.frame(i_COHb)
print(df)
## i_COHb
## 1 6.4
## 2 2.6
## 3 3.5
## 4 2.9
## 5 3.9
## 6 2.2
## 7 5.5
## 8 4.4
## 9 3.5
## 10 3.2
## 11 2.8
## 12 2.4
## 13 3.5
## 14 3.3
## 15 3.7
## 16 2.6
## 17 3.5
## 18 4.5
## 19 4.2
## 20 2.9
## 21 3.1
## 22 3.3
## 23 4.3
## 24 2.6
## 25 4.1
## 26 3.7
- Find the mean, median, sample standard deviation, and IQR. Be sure to include proper STATISTICAL notation for each with their respective values
**Answer: The mean, median, standard deviation, and IQR are as follows:
[1] The mean value of the sample of pregnant women: x̄=3.561538 [1] The median value of the sample of pregnant women: x͂= 3.5 [1] SD= 0.9533423 [1] IQR = 1.15
# Convert from char to numeric; find mean, median, standard deviation and IQR
i_COHb <- as.numeric(i_COHb)
mean(i_COHb)
## [1] 3.561538
## [1] 3.5
## [1] 0.9533423
## [1] 1.15
- Create a boxplot of these observations. If you are not using R, be sure your axis shows a proper scale (R will display the scale by default).
**Answer: See below - added 95% confidence intervals for the median using notch argument;added legend. I was able to add a main label to my box plot, however the code for adding a label on the horizontal and vertical sides of the plot didn’t work.
df <- as.numeric(i_COHb)
boxplot(df, notch=TRUE)

boxplot(df,
main = "Percent Increase of COHb in Pregnant Smokers")
# legend
legend("topright", legend = "Boxplot",
fill = rgb(1, 0, 0, alpha = 0.4), # Color
inset = c(0.03, 0.05), # Modify margins
bg = "white") # Legend background color

- Create a histogram of these observations. If you are not using R, be sure your axis shows a proper scale (R will display the scale by default).
**Answer: See below (worth noting - I used ggplot for the Probability lab and had no problem. For some reason, I kept erroring out when using it in various places during the quiz, so I used other code instead.
hist(df, # Change number of histogram breaks
breaks = 50)

hist(df, # Change main title of histogram
main = "Percent Increase of COHb in Pregnant Smokers")
lines(density(df), col = "red") # Overlay density on histogram

Question 2
A plant physiologist investigated the effect of light on the growth of soybean plants. 13 different types of soybean seedlings were randomly allocated to two treatments: low light and moderate light. After 16 days of growth, plants were harvested, and the total leaf area (〖cm〗^2 ) of each plant was measured.
In the space below, create a scatterplot of the data. Try to include axes labels on each of the axes. If you can, overlay a regression line on your scatterplot.
**Answer: See below; the constant, x (13 types of seedlings), is on the X axis; y is the dependent variable, growth. I used several variations of the lines() functionality to overlay a regression line. The plot looks different than I expected, so I tried multiple
samples <- c("1", "2","3", "4","5","6", "7", "8", "9", "10", "11", "12", "13")
lowLight <-c("264","200","225","268","215","241","232","256","229","288","253","288","230")
mLight <-c("314","320","310","340","299","268","345","271","285","309","337","282","273")
plantGrowth <- data.frame(samples, lowLight, mLight)
print(plantGrowth)
## samples lowLight mLight
## 1 1 264 314
## 2 2 200 320
## 3 3 225 310
## 4 4 268 340
## 5 5 215 299
## 6 6 241 268
## 7 7 232 345
## 8 8 256 271
## 9 9 229 285
## 10 10 288 309
## 11 11 253 337
## 12 12 288 282
## 13 13 230 273
#create scatterplot of data
set.seed(1)
x=samples
y=lowLight
group <- as.factor(ifelse(x < 0.5, "Group 1", "Group 2"))
plot(x, y, pch = as.numeric(group), col = group)

plot(x, y, pch = 19, col = "gray52")
# Underlying model
lines(seq(0, 1, 0.05), 2 + 3 * seq(0, 1, 0.05)^2, col = "2", lwd = 3, lty = 2)
# Linear fit
abline(lm(y ~ x), col = "orange", lwd = 3)
## Warning in abline(lm(y ~ x), col = "orange", lwd = 3): only using the first two
## of 13 regression coefficients
lines(lowess(x, y), col = "blue", lwd = 3)
# Legend
legend("topleft", legend = c("Theoretical", "Linear", "Smooth"),
lwd = 3, lty = c(2, 1, 1), col = c("red", "orange", "blue"))
# Add new variable (moderate light)
x2=samples
y2=mLight
points(x2, y2, col = "green", pch = 19)
# Linear fit
abline(lm(y2 ~ x2), col = "red", lwd = 3)
## Warning in abline(lm(y2 ~ x2), col = "red", lwd = 3): only using the first two
## of 13 regression coefficients
lines(lowess(x2, y2), col = "yellow", lwd = 3)

LS0tDQp0aXRsZTogIlF1aXogMi1DaGFwdGVyIDIiDQphdXRob3I6ICJBYXJ5biBaaW1tZXJtYW4iDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQoNCmBgYHtyIGxvYWQtcGFja2FnZXMsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkob3BlbmludHJvKQ0KZGF0YSgiZGYiKQ0KZGF0YSgiaV9DT0hiIikNCmRhdGEoInNlZWRzIikNCmRhdGEoInBsYW50R3Jvd3RoIikNCmBgYA0KDQojIyMgUXVlc3Rpb24gMQ0KMS4JVGhlIGNhcmJvbiBtb25veGlkZSBpbiBjaWdhcmV0dGVzIGlzIHRob3VnaHQgdG8gYmUgaGF6YXJkb3VzIHRvIHRoZSBmZXR1cyBvZiBhIHByZWduYW50IHdvbWFuIHdobyBzbW9rZXMuIEluIGEgc3R1ZHkgb2YgdGhpcyBoeXBvdGhlc2lzLCBibG9vZCB3YXMgZHJhd24gZnJvbSBwcmVnbmFudCB3b21lbiBiZWZvcmUgYW5kIGFmdGVyIHNtb2tpbmcgYSBjaWdhcmV0dGUuIE1lYXN1cmVtZW50cyB3ZXJlIG1hZGUgb2YgdGhlIHBlcmNlbnQgaW5jcmVhc2Ugb2YgYmxvb2QgaGVtb2dsb2JpbiBib3VuZCB0byBjYXJib24gbW9ub3hpZGUgKENPSGIpLiBUaGUgcmVzdWx0cyBmb3IgMjYgd29tZW4gYXJlOg0KNi40CTIuNgkzLjUJMi45CTMuOQkyLjIJNS41CTQuNAkzLjUJMy4yCTIuOAkyLjQJMy41CQ0KMy4zCTMuNwkyLjYJMy41CTQuNQk0LjIJMi45CTMuMQkzLjMJNC4zCTIuNgk0LjEJMy43DQoNCmBgYHtyIGNvZGUtY2h1bmstbGFiZWx9DQoNCmlfQ09IYiA8LSBjKCI2LjQiLCAiMi42IiwiMy41IiwgIjIuOSIsIjMuOSIsIjIuMiIsICI1LjUiLCAiNC40IiwgIjMuNSIsICIzLjIiLCAiMi44IiwgIjIuNCIsICIzLjUiLCAiMy4zIiwgIjMuNyIsICIyLjYiLCAiMy41IiwgIjQuNSIsICI0LjIiLCAiMi45IiwiMy4xIiwgIjMuMyIsICI0LjMiLCIyLjYiLCI0LjEiLCIzLjciKQ0KDQpkZiA8LWRhdGEuZnJhbWUoaV9DT0hiKQ0KcHJpbnQoZGYpDQogICAgICAgICAgICAgICAgICANCmBgYA0KDQphLglGaW5kIHRoZSBtZWFuLCBtZWRpYW4sIHNhbXBsZSBzdGFuZGFyZCBkZXZpYXRpb24sIGFuZCBJUVIuIA0KQmUgc3VyZSB0byBpbmNsdWRlIHByb3BlciBTVEFUSVNUSUNBTCBub3RhdGlvbiBmb3IgZWFjaCB3aXRoIHRoZWlyIHJlc3BlY3RpdmUgdmFsdWVzDQoNCioqQW5zd2VyOiAgVGhlIG1lYW4sIG1lZGlhbiwgc3RhbmRhcmQgZGV2aWF0aW9uLCBhbmQgSVFSIGFyZSBhcyBmb2xsb3dzOg0KDQpbMV0gVGhlIG1lYW4gdmFsdWUgb2YgdGhlIHNhbXBsZSBvZiBwcmVnbmFudCB3b21lbjoJeMyEPTMuNTYxNTM4DQpbMV0gVGhlIG1lZGlhbiB2YWx1ZSBvZiB0aGUgc2FtcGxlIG9mIHByZWduYW50IHdvbWVuOiAgeM2CPSAzLjUNClsxXSBTRD0gMC45NTMzNDIzDQpbMV0gSVFSID0gMS4xNQ0KDQpgYGB7cn0NCg0KIyBDb252ZXJ0IGZyb20gY2hhciB0byBudW1lcmljOyBmaW5kIG1lYW4sIG1lZGlhbiwgc3RhbmRhcmQgZGV2aWF0aW9uIGFuZCBJUVINCmlfQ09IYiA8LSBhcy5udW1lcmljKGlfQ09IYikNCm1lYW4oaV9DT0hiKQ0KbWVkaWFuKGlfQ09IYikNCnNkKGlfQ09IYikNCklRUihpX0NPSGIpDQpgYGANCg0KYi4JQ3JlYXRlIGEgYm94cGxvdCBvZiB0aGVzZSBvYnNlcnZhdGlvbnMuIElmIHlvdSBhcmUgbm90IHVzaW5nIFIsIGJlIHN1cmUgeW91ciBheGlzIHNob3dzIGEgcHJvcGVyIHNjYWxlIChSIHdpbGwgZGlzcGxheSB0aGUgc2NhbGUgYnkgZGVmYXVsdCkuDQoNCioqQW5zd2VyOiAgU2VlIGJlbG93IC0gYWRkZWQgOTUlIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIGZvciB0aGUgbWVkaWFuIHVzaW5nIG5vdGNoIGFyZ3VtZW50O2FkZGVkIGxlZ2VuZC4gIEkgd2FzIGFibGUgdG8gYWRkIGEgbWFpbiBsYWJlbCB0byBteSBib3ggcGxvdCwgaG93ZXZlciB0aGUgY29kZSBmb3IgYWRkaW5nIGEgbGFiZWwgb24gdGhlIGhvcml6b250YWwgYW5kIHZlcnRpY2FsIHNpZGVzIG9mIHRoZSBwbG90IGRpZG4ndCB3b3JrLiAgDQoNCmBgYHtyfQ0KZGYgPC0gYXMubnVtZXJpYyhpX0NPSGIpDQpib3hwbG90KGRmLCBub3RjaD1UUlVFKQ0KDQpib3hwbG90KGRmLCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgDQogICAgIG1haW4gPSAiUGVyY2VudCBJbmNyZWFzZSBvZiBDT0hiIGluIFByZWduYW50IFNtb2tlcnMiKQ0KIyBsZWdlbmQNCmxlZ2VuZCgidG9wcmlnaHQiLCBsZWdlbmQgPSAiQm94cGxvdCIsIA0KICAgIGZpbGwgPSByZ2IoMSwgMCwgMCwgYWxwaGEgPSAwLjQpLCAgIyBDb2xvcg0KICAgIGluc2V0ID0gYygwLjAzLCAwLjA1KSwgIyBNb2RpZnkgbWFyZ2lucw0KICAgIGJnID0gIndoaXRlIikgIyBMZWdlbmQgYmFja2dyb3VuZCBjb2xvcg0KDQpgYGANCg0KDQpjLglDcmVhdGUgYSBoaXN0b2dyYW0gb2YgdGhlc2Ugb2JzZXJ2YXRpb25zLiBJZiB5b3UgYXJlIG5vdCB1c2luZyBSLCBiZSBzdXJlIHlvdXIgYXhpcyBzaG93cyBhIHByb3BlciBzY2FsZSAoUiB3aWxsIGRpc3BsYXkgdGhlIHNjYWxlIGJ5IGRlZmF1bHQpLg0KDQoqKkFuc3dlcjogIFNlZSBiZWxvdyAod29ydGggbm90aW5nIC0gSSB1c2VkIGdncGxvdCBmb3IgdGhlIFByb2JhYmlsaXR5IGxhYiBhbmQgaGFkIG5vIHByb2JsZW0uICBGb3Igc29tZSByZWFzb24sIEkga2VwdCBlcnJvcmluZyBvdXQgd2hlbiB1c2luZyBpdCBpbiB2YXJpb3VzIHBsYWNlcyBkdXJpbmcgdGhlIHF1aXosIHNvIEkgdXNlZCBvdGhlciBjb2RlIGluc3RlYWQuDQoNCmBgYHtyfQ0KDQpoaXN0KGRmLCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgQ2hhbmdlIG51bWJlciBvZiBoaXN0b2dyYW0gYnJlYWtzDQogICAgIGJyZWFrcyA9IDUwKQ0KaGlzdChkZiwgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIENoYW5nZSBtYWluIHRpdGxlIG9mIGhpc3RvZ3JhbQ0KICAgICBtYWluID0gIlBlcmNlbnQgSW5jcmVhc2Ugb2YgQ09IYiBpbiBQcmVnbmFudCBTbW9rZXJzIikNCmxpbmVzKGRlbnNpdHkoZGYpLCBjb2wgPSAicmVkIikgICAgICAgICAgICAgICAgICAgICAgICAgIyBPdmVybGF5IGRlbnNpdHkgb24gaGlzdG9ncmFtDQoNCmBgYA0KDQojIyMgUXVlc3Rpb24gMg0KDQpBIHBsYW50IHBoeXNpb2xvZ2lzdCBpbnZlc3RpZ2F0ZWQgdGhlIGVmZmVjdCBvZiBsaWdodCBvbiB0aGUgZ3Jvd3RoIG9mIHNveWJlYW4gcGxhbnRzLiAxMyBkaWZmZXJlbnQgdHlwZXMgb2Ygc295YmVhbiBzZWVkbGluZ3Mgd2VyZSByYW5kb21seSBhbGxvY2F0ZWQgdG8gdHdvIHRyZWF0bWVudHM6IGxvdyBsaWdodCBhbmQgbW9kZXJhdGUgbGlnaHQuIEFmdGVyIDE2IGRheXMgb2YgZ3Jvd3RoLCBwbGFudHMgd2VyZSBoYXJ2ZXN0ZWQsIGFuZCB0aGUgdG90YWwgbGVhZiBhcmVhICjjgJZjbeOAl14yICkgb2YgZWFjaCBwbGFudCB3YXMgbWVhc3VyZWQuIA0KDQpJbiB0aGUgc3BhY2UgYmVsb3csIGNyZWF0ZSBhIHNjYXR0ZXJwbG90IG9mIHRoZSBkYXRhLiBUcnkgdG8gaW5jbHVkZSBheGVzIGxhYmVscyBvbiBlYWNoIG9mIHRoZSBheGVzLiBJZiB5b3UgY2FuLCBvdmVybGF5IGEgcmVncmVzc2lvbiBsaW5lIG9uIHlvdXIgc2NhdHRlcnBsb3QuDQoNCg0KKipBbnN3ZXI6ICBTZWUgYmVsb3c7IHRoZSBjb25zdGFudCwgeCAoMTMgdHlwZXMgb2Ygc2VlZGxpbmdzKSwgaXMgb24gdGhlIFggYXhpczsgeSBpcyB0aGUgZGVwZW5kZW50IHZhcmlhYmxlLCBncm93dGguIEkgdXNlZCBzZXZlcmFsIHZhcmlhdGlvbnMgb2YgdGhlIGxpbmVzKCkgZnVuY3Rpb25hbGl0eSB0byBvdmVybGF5IGEgcmVncmVzc2lvbiBsaW5lLiBUaGUgcGxvdCBsb29rcyBkaWZmZXJlbnQgdGhhbiBJIGV4cGVjdGVkLCBzbyBJIHRyaWVkIG11bHRpcGxlIA0KDQoNCmBgYHtyfQ0Kc2FtcGxlcyA8LSBjKCIxIiwgIjIiLCIzIiwgIjQiLCI1IiwiNiIsICI3IiwgIjgiLCAiOSIsICIxMCIsICIxMSIsICIxMiIsICIxMyIpDQpsb3dMaWdodCA8LWMoIjI2NCIsIjIwMCIsIjIyNSIsIjI2OCIsIjIxNSIsIjI0MSIsIjIzMiIsIjI1NiIsIjIyOSIsIjI4OCIsIjI1MyIsIjI4OCIsIjIzMCIpDQptTGlnaHQgPC1jKCIzMTQiLCIzMjAiLCIzMTAiLCIzNDAiLCIyOTkiLCIyNjgiLCIzNDUiLCIyNzEiLCIyODUiLCIzMDkiLCIzMzciLCIyODIiLCIyNzMiKQ0KcGxhbnRHcm93dGggPC0gZGF0YS5mcmFtZShzYW1wbGVzLCBsb3dMaWdodCwgbUxpZ2h0KQ0KcHJpbnQocGxhbnRHcm93dGgpDQpgYGANCg0KYGBge3J9DQoNCiNjcmVhdGUgc2NhdHRlcnBsb3Qgb2YgZGF0YQ0Kc2V0LnNlZWQoMSkNCng9c2FtcGxlcw0KeT1sb3dMaWdodA0KZ3JvdXAgPC0gYXMuZmFjdG9yKGlmZWxzZSh4IDwgMC41LCAiR3JvdXAgMSIsICJHcm91cCAyIikpDQpwbG90KHgsIHksIHBjaCA9IGFzLm51bWVyaWMoZ3JvdXApLCBjb2wgPSBncm91cCkNCnBsb3QoeCwgeSwgcGNoID0gMTksIGNvbCA9ICJncmF5NTIiKQ0KIyBVbmRlcmx5aW5nIG1vZGVsDQpsaW5lcyhzZXEoMCwgMSwgMC4wNSksIDIgKyAzICogc2VxKDAsIDEsIDAuMDUpXjIsIGNvbCA9ICIyIiwgbHdkID0gMywgbHR5ID0gMikNCiMgTGluZWFyIGZpdA0KYWJsaW5lKGxtKHkgfiB4KSwgY29sID0gIm9yYW5nZSIsIGx3ZCA9IDMpDQpsaW5lcyhsb3dlc3MoeCwgeSksIGNvbCA9ICJibHVlIiwgbHdkID0gMykNCg0KIyBMZWdlbmQNCmxlZ2VuZCgidG9wbGVmdCIsIGxlZ2VuZCA9IGMoIlRoZW9yZXRpY2FsIiwgIkxpbmVhciIsICJTbW9vdGgiKSwNCiAgICAgICBsd2QgPSAzLCBsdHkgPSBjKDIsIDEsIDEpLCBjb2wgPSBjKCJyZWQiLCAib3JhbmdlIiwgImJsdWUiKSkNCg0KIyBBZGQgbmV3IHZhcmlhYmxlIChtb2RlcmF0ZSBsaWdodCkNCngyPXNhbXBsZXMNCnkyPW1MaWdodA0KcG9pbnRzKHgyLCB5MiwgY29sID0gImdyZWVuIiwgcGNoID0gMTkpDQojIExpbmVhciBmaXQNCmFibGluZShsbSh5MiB+IHgyKSwgY29sID0gInJlZCIsIGx3ZCA9IDMpDQpsaW5lcyhsb3dlc3MoeDIsIHkyKSwgY29sID0gInllbGxvdyIsIGx3ZCA9IDMpDQoNCg0KYGBgDQoNCg0KDQojIyMgUXVlc3Rpb24gMw0KDQpUaGUgZm9sbG93aW5nIGhpc3RvZ3JhbSBzaG93cyB0aGUgc2FtZSBkYXRhIHRoYXQgYXJlIHNob3duIGluIG9uZSBvZiB0aGUgZm91ciBib3hwbG90cy4gV2hpY2ggYm94cGxvdCAoYSwgYiwgYywgb3IgZCkgZ29lcyB3aXRoIHRoZSBoaXN0b2dyYW0/IEV4cGxhaW4geW91ciBhbnN3ZXIuDQoNCioqQW5zd2VyOiAgVGhlIGhpc3RvZ3JhbSBzaG93cyBhIG1lZGlhbiB2YWx1ZSBvZiA0NSB3aXRoIGRhdGEgcG9pbnRzIGJldHdlZW4gMjUgYW5kIDYwLiAgQm94IHBsb3QgQyBzaG93cyB0aGUgc2FtZSBkYXRhLiAgDQoNCg0K