#load brfss
library(car)
## Loading required package: carData
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(questionr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tableone)

load(url("https://github.com/coreysparks/data/blob/master/brfss_2017.Rdata?raw=true"))
View(brfss_17)
##Fix variables

nams<-names(brfss_17)
head(nams, n=10)
##  [1] "dispcode" "statere1" "safetime" "hhadult"  "genhlth"  "physhlth"
##  [7] "menthlth" "poorhlth" "hlthpln1" "persdoc2"
newnames<-tolower(gsub(pattern = "_",replacement =  "",x =  nams))
names(brfss_17)<-newnames
##Filter Texas
brfss_17$tx<-NA
brfss_17$tx[grep(pattern = "TX", brfss_17$mmsaname)]<-1

##Remove Non-Responses 
brfss_17<-brfss_17%>%
  filter(tx==1, is.na(mmsawt)==F, is.na(hlthpln1)==F)

Recoding of variables

Be sure to always check your codebooks!

#I will be using e-cigarette smoking(ECIGARET)
#recode 
brfss_17$ecigaret<-Recode(brfss_17$ecigaret, recodes ="7:9=NA; 1=1;2=0")

Define a binary outcome variable of your choosing and define how you recode the original variable.

##The binary outcome i chose was ECIGARET
##THE VARIABLE NAME CHANGED TO CIG AND 7:9 ARE NOW NA, WHILE 1 IS RECODED AS 1 TO MEAN YES THEY ARE E-CIGERATE SMOKERS WHILE 2=0 MEANS NO THEY ARE NOT SMOKERS

State a research question about what factors you believe will affect your outcome variable.

##How do exercise and e-cigaretteS affect ones health?

Define at least 2 predictor variables, based on your research question. For this assignment, it’s best if these are categorical variables.

##The predictor variables are exercise and sex
##I would like to see if males or females that exercise are more prone to use e-cigarettes

Perform a descriptive analysis of the outcome variable by each of the variables you defined in part b. (e.g. 2 x 2 table, 2 x k table). Follow a similar approach to presenting your statistics as presented in Sparks 2009 (in the Google drive). This can be done easily using the tableone package!

##Recode
##Exercise
brfss_17$exerany2<-Recode(brfss_17$exerany2, recodes ="7:9=NA; 1=1;2=0")
na.omit(brfss_17$exerany2)
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1
##   [75] 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
##  [112] 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0
##  [149] 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1
##  [186] 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
##  [223] 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1
##  [260] 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1
##  [297] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0
##  [334] 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1
##  [371] 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0
##  [408] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1
##  [445] 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1
##  [519] 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1
##  [593] 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1
##  [630] 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1
##  [667] 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
##  [704] 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0
##  [741] 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1
##  [778] 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1
##  [815] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0
##  [852] 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
##  [889] 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
##  [926] 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1
##  [963] 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1
## [1000] 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1
## [1037] 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1
## [1074] 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1
## [1111] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1
## [1148] 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1
## [1185] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [1222] 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [1259] 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0
## [1296] 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1
## [1333] 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1
## [1370] 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1
## [1407] 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1
## [1444] 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1
## [1481] 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1
## [1518] 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1
## [1555] 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0
## [1592] 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1
## [1629] 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
## [1666] 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1
## [1703] 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1
## [1740] 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1
## [1777] 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1
## [1814] 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1
## [1851] 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1
## [1888] 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0
## [1925] 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0
## [1962] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [1999] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1
## [2036] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1
## [2073] 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0
## [2110] 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1
## [2147] 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1
## [2184] 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1
## [2221] 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1
## [2258] 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1
## [2295] 1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0
## [2332] 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1
## [2369] 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1
## [2406] 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1
## [2443] 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0
## [2480] 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0
## [2517] 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0
## [2554] 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
## [2591] 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1
## [2628] 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1
## [2665] 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1
## [2702] 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0
## [2739] 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1
## [2776] 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0
## [2813] 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1
## [2850] 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0
## [2887] 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1
## [2924] 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1
## [2961] 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1
## [2998] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1
## [3035] 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1
## [3072] 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1
## [3109] 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1
## [3146] 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1
## [3183] 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [3220] 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0
## [3257] 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0
## [3294] 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0
## [3331] 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0
## [3368] 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1
## [3405] 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1
## [3442] 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1
## [3479] 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1
## [3516] 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0
## [3553] 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0
## [3590] 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1
## [3627] 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1
## [3664] 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0
## [3701] 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 0 1
## [3738] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [3775] 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0
## [3812] 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1
## [3849] 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1
## [3886] 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1
## [3923] 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0
## [3960] 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0
## [3997] 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0
## [4034] 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1
## [4071] 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0
## [4108] 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0
## [4145] 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
## [4182] 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1
## [4219] 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [4256] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1
## [4293] 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1
## [4330] 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0
## [4367] 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 1
## [4404] 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [4441] 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1
## [4478] 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1
## [4515] 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1
## [4552] 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1
## [4589] 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1
## [4626] 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0
## [4663] 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1
## [4700] 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0
## [4737] 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1
## [4774] 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1
## [4811] 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1
## [4848] 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1
## [4885] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [4922] 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
## [4959] 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [4996] 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1
## [5033] 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1
## [5070] 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1
## [5107] 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1
## [5144] 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0
## [5181] 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0
## [5218] 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1
## [5255] 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0
## [5292] 0 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1
## [5329] 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1
## [5366] 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1
## [5403] 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1
## [5440] 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0
## [5477] 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1
## [5514] 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0
## [5551] 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1
## [5588] 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0
## [5625] 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1
## [5662] 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0
## [5699] 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0
## [5736] 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1
## [5773] 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0
## [5810] 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0
## [5847] 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0
## [5884] 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1
## [5921] 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1
## [5958] 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1
## [5995] 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1
## [6032] 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1
## [6069] 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1
## [6106] 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
## [6143] 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1
## [6180] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1
## [6217] 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1
## [6254] 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1
## [6291] 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1
## [6328] 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1
## [6365] 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1
## [6402] 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1
## [6439] 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0
## [6476] 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1
## [6513] 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1
## [6550] 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0
## [6587] 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1
## [6624] 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 0
## [6661] 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1
## [6698] 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1
## [6735] 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1
## [6772] 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [6809] 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0
## [6846] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0
## [6883] 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1
## [6920] 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1
## [6957] 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0
## [6994] 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1
## [7031] 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0
## [7068] 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1
## [7105] 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0
## [7142] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1
## [7179] 0 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1
## [7216] 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1
## [7253] 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1
## [7290] 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1
## [7327] 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1
## [7364] 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7401] 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1
## [7438] 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1
## [7475] 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1
## [7512] 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1
## [7549] 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1
## [7586] 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 0
## [7623] 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0
## [7660] 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1
## [7697] 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0
## [7734] 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1
## [7771] 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1
## [7808] 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1
## [7845] 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1
## attr(,"na.action")
##   [1]   36   38   88  180  182  191  202  230  252  256  257  300  306  319  327
##  [16]  331  332  337  347  360  403  405  416  421  427  434  442  448  490  494
##  [31]  501  504  526  547  561  564  572  579  598  628  660  686  715  733  754
##  [46]  758  770  776  785  790  811  813  825  864  881  889  900  903  904  916
##  [61]  918  925  927  950  952  965  980  997 1010 1012 1029 1033 1034 1039 1044
##  [76] 1062 1081 1103 1111 1113 1126 1133 1160 1176 1191 1201 1202 1206 1220 1229
##  [91] 1236 1240 1245 1246 1257 1274 1277 1278 1301 1305 1316 1324 1328 1334 1366
## [106] 1400 1419 1420 1457 1459 1461 1470 1476 1478 1486 1492 1504 1519 1522 1543
## [121] 1550 1582 1584 1610 1650 1685 1715 1724 1753 1780 1781 1782 1802 1806 1808
## [136] 1817 1821 1830 1840 1864 1908 1915 1936 1940 1948 1960 1961 1973 1986 1993
## [151] 2027 2044 2053 2063 2079 2084 2099 2105 2114 2122 2131 2135 2138 2158 2184
## [166] 2188 2200 2203 2216 2224 2230 2237 2286 2297 2305 2359 2422 2424 2426 2445
## [181] 2453 2472 2486 2518 2524 2528 2530 2532 2554 2576 2580 2617 2631 2632 2634
## [196] 2639 2647 2663 2672 2684 2699 2702 2705 2706 2710 2712 2713 2726 2731 2742
## [211] 2745 2751 2758 2759 2769 2770 2776 2785 2788 2798 2809 2829 2841 2845 2848
## [226] 2850 2851 2871 2884 2888 2901 2907 2939 2940 2950 2980 2983 2986 2989 2990
## [241] 3013 3018 3019 3036 3053 3054 3058 3072 3095 3102 3113 3121 3134 3139 3168
## [256] 3179 3185 3205 3226 3247 3258 3260 3279 3292 3297 3334 3370 3388 3389 3393
## [271] 3402 3471 3481 3499 3518 3523 3524 3526 3528 3553 3562 3607 3660 3666 3677
## [286] 3685 3715 3738 3739 3741 3743 3750 3752 3762 3772 3782 3804 3825 3827 3828
## [301] 3832 3840 3871 3885 3895 3899 3910 3916 3922 3924 3925 3950 3973 3974 3983
## [316] 3986 3989 4000 4007 4009 4012 4031 4045 4050 4071 4086 4088 4089 4091 4113
## [331] 4124 4127 4172 4179 4199 4209 4217 4228 4258 4270 4277 4279 4325 4329 4332
## [346] 4340 4352 4353 4375 4394 4397 4410 4412 4416 4417 4434 4440 4447 4454 4461
## [361] 4471 4501 4502 4507 4514 4518 4524 4538 4561 4574 4582 4586 4591 4599 4612
## [376] 4649 4655 4658 4673 4709 4734 4735 4768 4777 4802 4804 4815 4825 4849 4871
## [391] 4879 4883 4897 4914 4919 4942 4947 4956 4957 4961 4963 4969 4996 5006 5030
## [406] 5045 5049 5066 5073 5077 5078 5088 5094 5101 5102 5105 5108 5114 5115 5118
## [421] 5128 5139 5156 5173 5197 5198 5201 5214 5220 5228 5236 5244 5252 5262 5271
## [436] 5275 5276 5279 5287 5296 5301 5307 5309 5315 5321 5329 5339 5341 5356 5364
## [451] 5385 5413 5423 5433 5441 5446 5462 5476 5481 5482 5488 5492 5512 5556 5562
## [466] 5568 5572 5613 5633 5643 5644 5685 5695 5699 5700 5725 5736 5750 5757 5774
## [481] 5800 5819 5820 5828 5844 5850 5877 5883 5919 5920 5929 5945 5957 5971 5993
## [496] 5999 6015 6026 6040 6046 6086 6091 6102 6104 6111 6115 6119 6121 6168 6185
## [511] 6192 6204 6221 6223 6233 6242 6249 6271 6303 6313 6315 6316 6337 6402 6424
## [526] 6429 6432 6441 6449 6473 6480 6484 6489 6497 6508 6510 6519 6520 6523 6531
## [541] 6542 6552 6557 6593 6595 6598 6600 6610 6619 6621 6652 6656 6698 6699 6706
## [556] 6711 6713 6716 6720 6738 6747 6758 6763 6769 6777 6785 6790 6800 6801 6805
## [571] 6812 6821 6846 6858 6864 6870 6876 6888 6889 6895 6903 6912 6927 6928 6931
## [586] 6932 6934 6938 6942 6951 6952 6954 6958 6964 6968 6969 6972 6973 6986 6996
## [601] 7001 7005 7015 7017 7027 7036 7048 7050 7051 7079 7082 7087 7097 7100 7106
## [616] 7126 7128 7137 7159 7167 7176 7187 7195 7200 7208 7213 7225 7236 7237 7240
## [631] 7246 7249 7252 7261 7276 7286 7294 7303 7323 7338 7342 7344 7347 7362 7365
## [646] 7374 7380 7385 7389 7394 7399 7403 7405 7409 7410 7418 7427 7439 7458 7489
## [661] 7499 7500 7512 7514 7531 7546 7574 7581 7598 7604 7605 7625 7653 7664 7675
## [676] 7711 7718 7777 7783 7800 7811 7857 7863 7869 7876 7882 7884 7891 7895 7905
## [691] 7922 7937 7940 7942 7944 7949 7953 7956 7959 7963 7973 7978 7985 7991 7996
## [706] 8010 8012 8014 8017 8018 8021 8054 8055 8065 8072 8076 8078 8081 8105 8112
## [721] 8130 8134 8135 8185 8215 8217 8220 8225 8226 8230 8235 8237 8262 8287 8306
## [736] 8314 8329 8376 8390 8396 8405 8406 8429 8457 8464 8468 8470 8475 8513 8524
## [751] 8526 8531 8534 8544 8547 8565 8575 8604 8607 8613 8625
## attr(,"class")
## [1] "omit"
##Sex code 1
brfss_17$sex<-as.factor(ifelse(brfss_17$sex==1, "Male", "Female"))

##choose only TX
brfss_17$tx<-NA
brfss_17$tx[grep(pattern = "TX", brfss_17$mmsaname)]<-1

##Raw frequencies;un weighted data

##Exercise
table(brfss_17$ecigaret, brfss_17$exerany2)
##    
##        0    1
##   0 1959 4750
##   1  340  801
##column percentages
prop.table(table(brfss_17$ecigaret, brfss_17$exerany2), margin=2)
##    
##             0         1
##   0 0.8521096 0.8557017
##   1 0.1478904 0.1442983
##basic chi square test of independence 
chisq.test(table(brfss_17$ecigaret, brfss_17$exerany2))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(brfss_17$ecigaret, brfss_17$exerany2)
## X-squared = 0.14118, df = 1, p-value = 0.7071
##Sex
table(brfss_17$ecigaret, brfss_17$sex)
##    
##     Female Male
##   0   4154 2827
##   1    613  584
##column percentages
prop.table(table(brfss_17$ecigaret, brfss_17$sex), margin=2)
##    
##        Female      Male
##   0 0.8714076 0.8287892
##   1 0.1285924 0.1712108
##basic chi square test of independence 
chisq.test(table(brfss_17$ecigaret, brfss_17$sex))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(brfss_17$ecigaret, brfss_17$sex)
## X-squared = 28.564, df = 1, p-value = 9.066e-08
##Using table one
t1<-CreateTableOne(vars = c("exerany2", "sex"), strata = "ecigaret", test = T, data = brfss_17)
#t1<-print(t1, format="p")
print(t1,format="p")
##                       Stratified by ecigaret
##                        0           1           p      test
##   n                    6981        1197                   
##   exerany2 (mean (SD)) 0.71 (0.45) 0.70 (0.46)  0.681     
##   sex = Male (%)       40.5        48.8        <0.001

Calculate descriptive statistics (mean or percentages) for each variable using no weights or survey design, as well as with full survey design and weights.

#survey design
des<-svydesign(ids=~1, strata=~ststr, weights=~mmsawt, data = brfss_17 )
##Exercise
#counts
cat<-wtd.table(brfss_17$ecigaret, brfss_17$exerany2, weights = brfss_17$mmsawt)

#proportions
prop.table(wtd.table(brfss_17$ecigaret, brfss_17$exerany2, weights = brfss_17$mmsawt), margin=2)
##           0         1
## 0 0.8151963 0.7934441
## 1 0.1848037 0.2065559
#compare that with the original, unweighted proportions
prop.table(table(brfss_17$ecigaret, brfss_17$exerany2), margin=2)
##    
##             0         1
##   0 0.8521096 0.8557017
##   1 0.1478904 0.1442983
##Sex
#counts
cat<-wtd.table(brfss_17$ecigaret, brfss_17$sex, weights = brfss_17$mmsawt)

#proportions
prop.table(wtd.table(brfss_17$ecigaret, brfss_17$sex, weights = brfss_17$mmsawt), margin=2)
##      Female      Male
## 0 0.8258119 0.7765149
## 1 0.1741881 0.2234851
#compare that with the original, unweighted proportions
prop.table(table(brfss_17$ecigaret, brfss_17$sex), margin=2)
##    
##        Female      Male
##   0 0.8714076 0.8287892
##   1 0.1285924 0.1712108

Calculate percentages, or means, for each of your independent variables for each level of your outcome variable and present this in a table, with appropriate survey-corrected test statistics. (tableone package helps)

library(tableone)
#survey design
des<-svydesign(ids=~1, strata=~ststr, weights=~mmsawt, data = brfss_17)
#not using survey design
options(survey.lonely.psu = "adjust")
st1<-svyCreateTableOne(vars = c("exerany2", "sex"), strata = "ecigaret", test = T, data = des)
st1<-print(st1, format="p")
##                       Stratified by ecigaret
##                        0                  1                 p      test
##   n                    11542277.85        2851551.68                   
##   exerany2 (mean (SD))        0.70 (0.46)       0.73 (0.45)  0.297     
##   sex = Male (%)              47.0              54.7         0.010

Are there substantive differences in the descriptive results between the analysis using survey design and that not using survey design?

##Yes there are substantial differences when using survey design and not using survey design as seen above

Homework 3

  1. For this homework, you will perform a logistic regression (or probit regression) of a binary outcome, using the dataset of your choice. I ask you specify a research question for your analysis and generate appropriate predictors in order to examine your question.
fit.logit<-svyglm(ecigaret ~ exerany2 + sex,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
library(broom)
fit.logit%>%
  tidy()%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value
(Intercept) -1.630 0.128 -12.687 0.000
exerany2 0.126 0.136 0.928 0.353
sexMale 0.304 0.125 2.437 0.015
  1. Present results from a model with sample weights and design effects, if your data allow for this. Present the results in tabular form, with Parameter estimates, odds ratios (if using the logit model) and confidence intervals for the odds ratios.
##logit model
fit.logit%>%
  tidy()%>%
  mutate(OR = exp(estimate))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR
(Intercept) -1.630 0.128 -12.687 0.000 0.196
exerany2 0.126 0.136 0.928 0.353 1.134
sexMale 0.304 0.125 2.437 0.015 1.356
##confidence intervals
fit.logit%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.630 0.128 -12.687 0.000 0.196 0.152 0.252
exerany2 0.126 0.136 0.928 0.353 1.134 0.870 1.479
sexMale 0.304 0.125 2.437 0.015 1.356 1.061 1.731

If you need help figuring out what your PSU, weight and sample strata variable are called in YOUR data, please ask.

  1. Generate predicted probabilities for some “interesting” cases from your analysis, to highlight the effects from the model and your stated research question.
library(emmeans)
rg<-ref_grid(fit.logit)

marg_logit<-emmeans(object = rg,
              specs = c( "exerany2",  "sex"),
              type="response" )

knitr::kable(marg_logit,  digits = 4)
exerany2 sex prob SE df asymp.LCL asymp.UCL
0 Female 0.1638 0.0176 Inf 0.1322 0.2013
1 Female 0.1818 0.0151 Inf 0.1540 0.2133
0 Male 0.2098 0.0216 Inf 0.1707 0.2552
1 Male 0.2315 0.0164 Inf 0.2009 0.2651