\[A = \begin{bmatrix} 1 & 2 & 3 & 4\\ -1 & 0 & 1 & 3\\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \end{bmatrix}\]
The rank of a matrix is defined as the maximum number of linearly independent vectors in rows or columns. If we have a matrix with dimensions R x C, having R number of rows and C number of columns, and if R is less than C then the rank of the matrix would be R. To find the rank of a matrix in R, we can use rankMatrix function in Matrix package.
library(Matrix)
A = matrix(c(1, 2, 3, 4,
-1, 0, 1, 3,
0, 1, -2, 1,
5, 4, -2 ,-3),
nrow = 4, ncol=4, byrow = TRUE )
print('Rank of the given matrix is:')
## [1] "Rank of the given matrix is:"
rankMatrix(A, method = "qr")
## [1] 4
## attr(,"method")
## [1] "qrLINPACK"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
## [1] 8.881784e-16
Since the rank is the number of linearly independent columns, the maximum rank can’t be larger than the number of columns, i.e. \(n\).
If the matrix is non-zero, the minimum rank would be 1.
\[B = \begin{bmatrix} 1 & 2 & 1\\ 3 & 6 & 3\\ 2 & 4 & 2 \end{bmatrix}\] #### Solution:
library(Matrix)
B = matrix(c(1, 2, 1,
3, 6, 3,
2, 4, 2),
nrow = 3, ncol=3, byrow = TRUE )
print('Rank of the given matrix is:')
## [1] "Rank of the given matrix is:"
rankMatrix(B, method = "qr")
## [1] 1
## attr(,"method")
## [1] "qrLINPACK"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
## [1] 6.661338e-16
\[A = \begin{bmatrix} 1 & 2 & 3\\ 0 & 4 & 5\\ 0 & 0 & 6 \end{bmatrix}\]
Let’s find eigenvalues of A first by finding the values of λ which satisfy the characteristic equation of the matrix A of which is
det(A- λI) = 0
where I is the 3 x 3 identity matrix
From the matrix A - λI: \[|A - \lambda I | = \left | \begin{bmatrix} 1 & 2 & 3\\ 0 & 4 & 5\\0 & 0 & 6\end{bmatrix} - \lambda \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \right |\] \(= \left|\begin{bmatrix}1-\lambda & 2 & 3\\ 0 & 4-\lambda & 5\\ 0 & 0 & 6-\lambda\end{bmatrix}\right|\)
\(= (1-\lambda)(4-\lambda)(6-\lambda)\)
\((1 - \lambda)\Big[24-10\lambda+\lambda^2\Big] = 24 -10\lambda + \lambda^2 -24\lambda +10\lambda^2 - \lambda^3 = -\lambda^3 + 11\lambda^2 -34\lambda + 24\)
After factoring, we get \((\lambda - 1)(\lambda - 4)(\lambda - 6)\)
So the eigenvalues are 1, 4, 6.
For \(\lambda = 1\):
library(pracma)
##
## Attaching package: 'pracma'
## The following objects are masked from 'package:Matrix':
##
## expm, lu, tril, triu
A <- matrix(c(1, 2, 3,
0, 4, 5,
0, 0, 6),
nrow = 3, ncol = 3, byrow = T)
I <- diag(3)
rref(A-I)
## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1
## [3,] 0 0 0
\(v_1 = \begin{bmatrix}1\\0\\0\\\end{bmatrix}\)
For \(\lambda = 4\):
rref(A - 4*I)
## [,1] [,2] [,3]
## [1,] 1 -0.6666667 0
## [2,] 0 0.0000000 1
## [3,] 0 0.0000000 0
\(x_1 - \frac{2}{3}x_2 = 0\)
\(v_4 = \begin{bmatrix}\frac{2}{3}\\1\\0\end{bmatrix}\)
For \(\lambda = 6\):
rref(A - 6*I)
## [,1] [,2] [,3]
## [1,] 1 0 -1.6
## [2,] 0 1 -2.5
## [3,] 0 0 0.0
\(x_1 - 1.6x_3 = 0 \hspace{20mm} x_2 - 2.5x_3 = 0 \hspace{5mm} x_3\neq 0\).
\(v_6 = \begin{bmatrix}1.6 \\ 2.5 \\ 1 \end{bmatrix}\)