Governance and CSR of listed firms

In order to analyse the factors that influence CSR we utilise the CSR dataset, first upload it.

library(readxl)
CSR_data <- read_excel("~/Desktop/UPF - MSc Management and BuA/SECOND Term/Benchmarking and Management Control/Benchmarking R FILES/CSR_data.xlsx")  

It is a set of 6580 observation with 90 variables. By looking at the data we see that companies in the set repeating over a 3 year period 2004-2005-2005. Hence I decided to subset them before working on them.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
year04 <- CSR_data %>% filter(year ==  2004)
year05 <- CSR_data %>% filter(year ==  2005)
year06 <- CSR_data %>% filter(year ==  2006)
print(year04) 
## # A tibble: 2,071 x 90
##        n  year name  isocountrycode mnemonic ftseindsector ftseindsubsctr
##    <dbl> <dbl> <chr> <chr>          <chr>            <dbl>          <dbl>
##  1  3916  2004 TOKY… JP             J:TZ@N              75            757
##  2    63  2004 ADVA… JP             J:AB@N              95            957
##  3  1247  2004 DTE … US             U:DTE               75            753
##  4  2588  2004 MITS… JP             J:JS@N              13            135
##  5  1158  2004 DELH… BE             B:DEH               53            533
##  6  2959  2004 PARK… US             U:PH                27            275
##  7  1952  2004 IBER… ES             E:IBL               57            575
##  8  2066  2004 INVE… GB             INVP                87            877
##  9  1267  2004 E*TR… US             @ETFC               87            877
## 10  3425  2004 SEKI… JP             J:SE@N              37            372
## # … with 2,061 more rows, and 83 more variables: economicscore <dbl>,
## #   socialscore <dbl>, environmentalscore <dbl>,
## #   bookvalueoutsharesfiscal <dbl>, commonsharesoutstanding <dbl>,
## #   numberofshares <dbl>, marketvalue <dbl>, marketcapitalization <dbl>,
## #   totalassets <dbl>, operatingincome <dbl>, longtermdebt <dbl>,
## #   totalintangibleotassetsnet <dbl>, totalliabilities <dbl>,
## #   netsalesorrevenues <dbl>, operatingexpensestotal <dbl>,
## #   netincomebasic <dbl>, researchdevelopment <dbl>, employees <dbl>,
## #   earningspershare <dbl>, netmargin <dbl>, operatingprofitmargin <dbl>,
## #   returnonequitytotal <dbl>, returnoninvestedcapital <dbl>,
## #   cashflowsales <dbl>, epsbasicyear <dbl>, singlebiggestowner <dbl>,
## #   boardsize <dbl>, valueboardstructureindependentbo <dbl>, ceoduality <dbl>,
## #   chairmanexceoofthecompany <dbl>, chairmanisexceo <dbl>,
## #   ceoboardmember <dbl>, valueboardstructureboardgenderdi <dbl>,
## #   ceocompensationlinktototalshareh <dbl>, goldenparachute <dbl>,
## #   otherantitakeoverdevices <dbl>, lnta <dbl>, ROA <dbl>,
## #   Leverage_liabassets <dbl>, anglo <dbl>, pdi <dbl>, idv <dbl>, mas <dbl>,
## #   uai <dbl>, egalitarianism <dbl>, harmony <dbl>, embeddedness <dbl>,
## #   namecountry <chr>, strengthofinvestorprotectioninde <dbl>,
## #   investmntcoheld <dbl>, strategicholdings <dbl>, tobinq <dbl>,
## #   zcountryname <chr>, zcountrycode <chr>, marketcapl <dbl>, gdpgrowthl <dbl>,
## #   gdppercapital <dbl>, domesticcreditl <dbl>, healthexpenditurel <dbl>,
## #   femaleparticipationl <dbl>, womeninparliamentl <dbl>,
## #   board_independence <dbl>, women_on_board <dbl>, soc_env_score <dbl>,
## #   soc_env_ec_score <dbl>, y2004 <dbl>, y2005 <dbl>, y2006 <dbl>,
## #   stakelaw <dbl>, csrlaw <dbl>, guillen_capron <dbl>, sizeinind <dbl>,
## #   lnsizeinind <dbl>, lnmarketcapl <dbl>, lngdppercapital <dbl>,
## #   lnhealthexpenditurel <dbl>, countrycode <chr>, co2emissions <dbl>,
## #   greenhousegas <dbl>, renew_energy_con <dbl>, gov_exp_education <dbl>,
## #   labor_force_part <dbl>, women_parliament <dbl>
print(year05)
## # A tibble: 2,233 x 90
##        n  year name  isocountrycode mnemonic ftseindsector ftseindsubsctr
##    <dbl> <dbl> <chr> <chr>          <chr>            <dbl>          <dbl>
##  1   473  2005 BARR… GB             BDEV                37            372
##  2  3237  2005 REST… GB             RTN                 57            575
##  3  3839  2005 TENE… US             U:THC               45            453
##  4  3045  2005 PITN… US             U:PBI               95            957
##  5   364  2005 AVAL… US             U:AVB               87            873
##  6  1821  2005 HEND… GB             HGG                 87            877
##  7    27  2005 ACCI… ES             E:ANA               23            235
##  8  2225  2005 KING… US             <NA>                45            457
##  9   906  2005 CIENA US             @CIEN               95            957
## 10  1025  2005 CONV… US             U:CVG               27            279
## # … with 2,223 more rows, and 83 more variables: economicscore <dbl>,
## #   socialscore <dbl>, environmentalscore <dbl>,
## #   bookvalueoutsharesfiscal <dbl>, commonsharesoutstanding <dbl>,
## #   numberofshares <dbl>, marketvalue <dbl>, marketcapitalization <dbl>,
## #   totalassets <dbl>, operatingincome <dbl>, longtermdebt <dbl>,
## #   totalintangibleotassetsnet <dbl>, totalliabilities <dbl>,
## #   netsalesorrevenues <dbl>, operatingexpensestotal <dbl>,
## #   netincomebasic <dbl>, researchdevelopment <dbl>, employees <dbl>,
## #   earningspershare <dbl>, netmargin <dbl>, operatingprofitmargin <dbl>,
## #   returnonequitytotal <dbl>, returnoninvestedcapital <dbl>,
## #   cashflowsales <dbl>, epsbasicyear <dbl>, singlebiggestowner <dbl>,
## #   boardsize <dbl>, valueboardstructureindependentbo <dbl>, ceoduality <dbl>,
## #   chairmanexceoofthecompany <dbl>, chairmanisexceo <dbl>,
## #   ceoboardmember <dbl>, valueboardstructureboardgenderdi <dbl>,
## #   ceocompensationlinktototalshareh <dbl>, goldenparachute <dbl>,
## #   otherantitakeoverdevices <dbl>, lnta <dbl>, ROA <dbl>,
## #   Leverage_liabassets <dbl>, anglo <dbl>, pdi <dbl>, idv <dbl>, mas <dbl>,
## #   uai <dbl>, egalitarianism <dbl>, harmony <dbl>, embeddedness <dbl>,
## #   namecountry <chr>, strengthofinvestorprotectioninde <dbl>,
## #   investmntcoheld <dbl>, strategicholdings <dbl>, tobinq <dbl>,
## #   zcountryname <chr>, zcountrycode <chr>, marketcapl <dbl>, gdpgrowthl <dbl>,
## #   gdppercapital <dbl>, domesticcreditl <dbl>, healthexpenditurel <dbl>,
## #   femaleparticipationl <dbl>, womeninparliamentl <dbl>,
## #   board_independence <dbl>, women_on_board <dbl>, soc_env_score <dbl>,
## #   soc_env_ec_score <dbl>, y2004 <dbl>, y2005 <dbl>, y2006 <dbl>,
## #   stakelaw <dbl>, csrlaw <dbl>, guillen_capron <dbl>, sizeinind <dbl>,
## #   lnsizeinind <dbl>, lnmarketcapl <dbl>, lngdppercapital <dbl>,
## #   lnhealthexpenditurel <dbl>, countrycode <chr>, co2emissions <dbl>,
## #   greenhousegas <dbl>, renew_energy_con <dbl>, gov_exp_education <dbl>,
## #   labor_force_part <dbl>, women_parliament <dbl>
print(year06)
## # A tibble: 2,276 x 90
##        n  year name  isocountrycode mnemonic ftseindsector ftseindsubsctr
##    <dbl> <dbl> <chr> <chr>          <chr>            <dbl>          <dbl>
##  1   705  2006 CAPI… GB             CSCG                87            873
##  2  2527  2006 MERC… CH             S:SEO               48            482
##  3  3926  2006 TOMR… NO             N:TOM               27            275
##  4  3978  2006 TRAV… US             U:TRV               85            853
##  5  1089  2006 CSR   GB             CSR                 95            957
##  6  3355  2006 SANO… FR             F:SQ@F              45            457
##  7  3315  2006 SACY… ES             E:VAL               23            235
##  8  1398  2006 ESSI… FR             F:EI                45            453
##  9   163  2006 ALLI… US             <NA>                27            279
## 10  1296  2006 EDIS… IT             I:EDN               77            775
## # … with 2,266 more rows, and 83 more variables: economicscore <dbl>,
## #   socialscore <dbl>, environmentalscore <dbl>,
## #   bookvalueoutsharesfiscal <dbl>, commonsharesoutstanding <dbl>,
## #   numberofshares <dbl>, marketvalue <dbl>, marketcapitalization <dbl>,
## #   totalassets <dbl>, operatingincome <dbl>, longtermdebt <dbl>,
## #   totalintangibleotassetsnet <dbl>, totalliabilities <dbl>,
## #   netsalesorrevenues <dbl>, operatingexpensestotal <dbl>,
## #   netincomebasic <dbl>, researchdevelopment <dbl>, employees <dbl>,
## #   earningspershare <dbl>, netmargin <dbl>, operatingprofitmargin <dbl>,
## #   returnonequitytotal <dbl>, returnoninvestedcapital <dbl>,
## #   cashflowsales <dbl>, epsbasicyear <dbl>, singlebiggestowner <dbl>,
## #   boardsize <dbl>, valueboardstructureindependentbo <dbl>, ceoduality <dbl>,
## #   chairmanexceoofthecompany <dbl>, chairmanisexceo <dbl>,
## #   ceoboardmember <dbl>, valueboardstructureboardgenderdi <dbl>,
## #   ceocompensationlinktototalshareh <dbl>, goldenparachute <dbl>,
## #   otherantitakeoverdevices <dbl>, lnta <dbl>, ROA <dbl>,
## #   Leverage_liabassets <dbl>, anglo <dbl>, pdi <dbl>, idv <dbl>, mas <dbl>,
## #   uai <dbl>, egalitarianism <dbl>, harmony <dbl>, embeddedness <dbl>,
## #   namecountry <chr>, strengthofinvestorprotectioninde <dbl>,
## #   investmntcoheld <dbl>, strategicholdings <dbl>, tobinq <dbl>,
## #   zcountryname <chr>, zcountrycode <chr>, marketcapl <dbl>, gdpgrowthl <dbl>,
## #   gdppercapital <dbl>, domesticcreditl <dbl>, healthexpenditurel <dbl>,
## #   femaleparticipationl <dbl>, womeninparliamentl <dbl>,
## #   board_independence <dbl>, women_on_board <dbl>, soc_env_score <dbl>,
## #   soc_env_ec_score <dbl>, y2004 <dbl>, y2005 <dbl>, y2006 <dbl>,
## #   stakelaw <dbl>, csrlaw <dbl>, guillen_capron <dbl>, sizeinind <dbl>,
## #   lnsizeinind <dbl>, lnmarketcapl <dbl>, lngdppercapital <dbl>,
## #   lnhealthexpenditurel <dbl>, countrycode <chr>, co2emissions <dbl>,
## #   greenhousegas <dbl>, renew_energy_con <dbl>, gov_exp_education <dbl>,
## #   labor_force_part <dbl>, women_parliament <dbl>

Unfortunately the observation for each year do not match. In order to avoid any mistake due to subsets’ mistake we follow with an approach in which we put in relation variables indipendently from the year subset.

Here we decided to put in relation with our dependent variable “soc_env_score” the follwing indipendent variables: “femaleparticipationl”, “healthexpenditurel”, “co2emission” and "BoardInd.

We rename them for tidiness purposes

CSRlevel <- CSR_data$soc_env_score
FEMpart <- CSR_data$femaleparticipationl
HEALTHexp <- CSR_data$healthexpenditurel
CO2 <- CSR_data$co2emissions
BoardInd <- CSR_data$board_independence

We run different singluar simpl regressions to see there is any stastical significance and correlation to test if our hypothesis were right.

reg1 <- lm(CSRlevel ~ FEMpart)
summary(reg1)
## 
## Call:
## lm(formula = CSRlevel ~ FEMpart)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -50.956 -26.009  -5.005  26.869  53.342 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 84.26834    3.61948  23.282   <2e-16 ***
## FEMpart     -0.65970    0.06659  -9.906   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28.5 on 6563 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.01473,    Adjusted R-squared:  0.01458 
## F-statistic: 98.14 on 1 and 6563 DF,  p-value: < 2.2e-16
reg2 <- lm(CSRlevel~ HEALTHexp)
summary(reg2)
## 
## Call:
## lm(formula = CSRlevel ~ HEALTHexp)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -44.777 -26.700  -4.691  27.648  53.445 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 52.5165250  0.5683821  92.397  < 2e-16 ***
## HEALTHexp   -0.0013206  0.0001628  -8.113 5.88e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28.6 on 6418 degrees of freedom
##   (160 observations deleted due to missingness)
## Multiple R-squared:  0.01015,    Adjusted R-squared:  0.009997 
## F-statistic: 65.82 on 1 and 6418 DF,  p-value: 5.881e-16
reg3 <- lm(CSRlevel ~ CO2)
summary(reg3)
## 
## Call:
## lm(formula = CSRlevel ~ CO2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -50.501 -24.201  -4.131  25.553  57.687 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 64.63846    0.91616   70.55   <2e-16 ***
## CO2         -1.25392    0.06628  -18.92   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 27.96 on 6563 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.05172,    Adjusted R-squared:  0.05158 
## F-statistic:   358 on 1 and 6563 DF,  p-value: < 2.2e-16
reg4 <- lm(CSRlevel ~ BoardInd)
summary(reg4)
## 
## Call:
## lm(formula = CSRlevel ~ BoardInd)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.904 -26.457  -2.149  27.275  45.572 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 55.77382    1.08426  51.440   <2e-16 ***
## BoardInd    -0.04049    0.01686  -2.401   0.0164 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28.14 on 3141 degrees of freedom
##   (3437 observations deleted due to missingness)
## Multiple R-squared:  0.001833,   Adjusted R-squared:  0.001515 
## F-statistic: 5.767 on 1 and 3141 DF,  p-value: 0.01639

all these three regression show a strong stastically siginifcant relatio between CSRlevel and singulralry in order FEMpart, HEALTHexp and CO2.

Here we run a multiple regression to see if the assumptions still holds.

MULTreg <- lm (CSRlevel~ FEMpart + HEALTHexp + CO2 + BoardInd )
summary (MULTreg)
## 
## Call:
## lm(formula = CSRlevel ~ FEMpart + HEALTHexp + CO2 + BoardInd)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -61.011 -23.680  -1.852  24.227  60.149 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 77.5484753  5.9763353  12.976  < 2e-16 ***
## FEMpart     -0.1889020  0.1238697  -1.525    0.127    
## HEALTHexp    0.0009231  0.0002197   4.202 2.72e-05 ***
## CO2         -1.7544745  0.1170239 -14.992  < 2e-16 ***
## BoardInd     0.1481291  0.0204219   7.253 5.10e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26.85 on 3119 degrees of freedom
##   (3456 observations deleted due to missingness)
## Multiple R-squared:  0.09286,    Adjusted R-squared:  0.0917 
## F-statistic: 79.82 on 4 and 3119 DF,  p-value: < 2.2e-16

By running the multiple regression the stastical significance of female participation decreases and therefore we could assume that it does not make a bih change in terms of CSR level for a company. On the other hand CO2 emmisions are negatively correlated meaning that the higher the CO2 level the lower is the CSR of a company, which is logial and make sense (the more you pollute the worse you score in terms of Corporate Social Responsability). Health exp is also negatively correlated, Country level health expenditure as percentage of GSD does not affect positively this regression.

Hence we answer the following questions:

1- Does an high female participation affect positively the level of Corporate Social Responsability of an organisation? Not statisically siginificant, and it loses even more significance when put in a multiple regression, hence it is not correlate positively.

2- Does an high health expenditure affect positively the level of Corporate Social Responsability of an organisation? Negatively

3- Does an high CO2 emmission affect positively the level of Corporate Social Responsability of an organisation? This is obviously negative as CSR also relies on how green a company is.

4 - Does an high board indipendence affect positively the level of Corporate Social Responsability of an organisation? in the somple linear regression it has a stastical siginificance of 95% and it affects negatively CSRlevel. When put in the multiple regression it becomes postive and its siginficance increase to 99%. In this sense we can assume that board indipendence has a more CSR oriented view, with no conflict of interests and it is a positive correlatio.