Homework 1: Exploratory Data Analysis

Principles of Data Visualization and Introduction to ggplot2

I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:

inc <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc5000_data.csv", header= TRUE)

And lets preview this data:

head(inc)
##   Rank                         Name Growth_Rate   Revenue
## 1    1                         Fuhu      421.48 1.179e+08
## 2    2        FederalConference.com      248.31 4.960e+07
## 3    3                The HCI Group      245.45 2.550e+07
## 4    4                      Bridger      233.08 1.900e+09
## 5    5                       DataXu      213.37 8.700e+07
## 6    6 MileStone Community Builders      179.38 4.570e+07
##                       Industry Employees         City State
## 1 Consumer Products & Services       104   El Segundo    CA
## 2          Government Services        51     Dumfries    VA
## 3                       Health       132 Jacksonville    FL
## 4                       Energy        50      Addison    TX
## 5      Advertising & Marketing       220       Boston    MA
## 6                  Real Estate        63       Austin    TX
summary(inc)
##       Rank                          Name       Growth_Rate     
##  Min.   :   1   (Add)ventures         :   1   Min.   :  0.340  
##  1st Qu.:1252   @Properties           :   1   1st Qu.:  0.770  
##  Median :2502   1-Stop Translation USA:   1   Median :  1.420  
##  Mean   :2502   110 Consulting        :   1   Mean   :  4.612  
##  3rd Qu.:3751   11thStreetCoffee.com  :   1   3rd Qu.:  3.290  
##  Max.   :5000   123 Exteriors         :   1   Max.   :421.480  
##                 (Other)               :4995                    
##     Revenue                                  Industry      Employees      
##  Min.   :2.000e+06   IT Services                 : 733   Min.   :    1.0  
##  1st Qu.:5.100e+06   Business Products & Services: 482   1st Qu.:   25.0  
##  Median :1.090e+07   Advertising & Marketing     : 471   Median :   53.0  
##  Mean   :4.822e+07   Health                      : 355   Mean   :  232.7  
##  3rd Qu.:2.860e+07   Software                    : 342   3rd Qu.:  132.0  
##  Max.   :1.010e+10   Financial Services          : 260   Max.   :66803.0  
##                      (Other)                     :2358   NA's   :12       
##             City          State     
##  New York     : 160   CA     : 701  
##  Chicago      :  90   TX     : 387  
##  Austin       :  88   NY     : 311  
##  Houston      :  76   VA     : 283  
##  San Francisco:  75   FL     : 282  
##  Atlanta      :  74   IL     : 273  
##  (Other)      :4438   (Other):2764

Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

Below, we can see that NY has the highest number of Employees, followed by DE, FL, MD so on and so forth:

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.1     ✔ purrr   0.3.3
## ✔ tibble  2.1.3     ✔ dplyr   0.8.3
## ✔ tidyr   1.0.0     ✔ stringr 1.4.0
## ✔ readr   1.3.1     ✔ forcats 0.4.0
## ── Conflicts ────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
employ_state <- inc %>% group_by(State) %>% summarise(total_emply = sum(Employees)) %>% arrange(desc(total_emply))

head(employ_state)
## # A tibble: 6 x 2
##   State total_emply
##   <fct>       <int>
## 1 NY          84370
## 2 DE          68544
## 3 FL          61221
## 4 MD          40439
## 5 OH          38002
## 6 MI          36905

And the Industry with the highest revenue comes from “Business Products & Services” followed by “IT Services”, “Health” and “Consumer Products & Services”:

revenue_indust <- inc %>% group_by(Industry) %>% summarise(total_rev = sum(Revenue)) %>% arrange(desc(total_rev))

head(revenue_indust)
## # A tibble: 6 x 2
##   Industry                       total_rev
##   <fct>                              <dbl>
## 1 Business Products & Services 26367900000
## 2 IT Services                  20681300000
## 3 Health                       17863400000
## 4 Consumer Products & Services 14956400000
## 5 Logistics & Transportation   14840500000
## 6 Energy                       13771600000

Lastly, we can observe that the industry with the highest average growth rate is “Energy”, followed by “Consumer Products & Services”, “Real Estate” and “Government Services” to name a few:

growth_indust <- inc %>% group_by(Industry) %>% summarise(avg_growth = mean(Growth_Rate)) %>% arrange(desc(avg_growth))

head(growth_indust)
## # A tibble: 6 x 2
##   Industry                     avg_growth
##   <fct>                             <dbl>
## 1 Energy                             9.60
## 2 Consumer Products & Services       8.78
## 3 Real Estate                        7.75
## 4 Government Services                7.24
## 5 Advertising & Marketing            6.23
## 6 Retail                             6.18

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.

comp_state <- inc %>% group_by(State) %>% summarise(Count = n()) %>% arrange(desc(Count))

ggplot(comp_state, aes(x=reorder(State, -Count), Count)) + geom_bar(stat="identity", width = 0.5, fill = "tomato2") + labs(x = "State", y = "Number of Companies", title = "Number of Fast-Growing Companies per State\n") + theme(axis.text.x = element_text(hjust = 1, size=10)) + theme(axis.text.y = element_text(hjust = 1, size=5)) + geom_label(aes(label=comp_state$Count), position = position_dodge(width = 0.1), size = 1.8, label.padding = unit(0.1, "lines"), label.size = 0.07, inherit.aes = TRUE) + coord_flip()

Quesiton 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

third_most_comp <- inc %>% filter(complete.cases(.)) %>% group_by(State) %>% mutate(companies = n()) %>% arrange(desc(companies)) %>% ungroup %>% mutate(y = dense_rank(desc(companies))) %>% filter(y == 3) %>% group_by(Industry)

head(third_most_comp)
## # A tibble: 6 x 10
## # Groups:   Industry [3]
##    Rank Name  Growth_Rate Revenue Industry Employees City  State companies     y
##   <int> <fct>       <dbl>   <dbl> <fct>        <int> <fct> <fct>     <int> <int>
## 1    26 Been…        84.4  1.37e7 Consume…        17 New … NY          311     3
## 2    30 Sail…        73.2  8.10e6 Adverti…        79 New … NY          311     3
## 3    37 Yell…        67.4  1.80e7 Adverti…        27 New … NY          311     3
## 4    38 Cond…        67.0  7.10e6 Adverti…        89 New … NY          311     3
## 5    48 Cini…        53.6  5.90e6 Financi…        32 Rock… NY          311     3
## 6    70 33Ac…        45.0  2.79e7 Adverti…        75 New … NY          311     3
ggplot(third_most_comp, aes(x=Industry, y=Employees)) + geom_boxplot(outlier.shape = NA, fill="tomato2") + scale_y_continuous(limits = quantile(third_most_comp$Employees, c(0.1,0.5))) + coord_flip()
## Warning: Removed 184 rows containing non-finite values (stat_boxplot).

This second way of looking at the requested data does not deal with outliers and may misrepresent the information we’re looking for:

third_avg_employ <- third_most_comp %>% group_by(Industry) %>% summarise(avg_empl = round(mean(Employees))) %>% arrange(desc(avg_empl))

head(third_avg_employ)
## # A tibble: 6 x 2
##   Industry                     avg_empl
##   <fct>                           <dbl>
## 1 Business Products & Services     1492
## 2 Consumer Products & Services      626
## 3 Travel & Hospitality              548
## 4 Human Resources                   438
## 5 Software                          246
## 6 IT Services                       204
ggplot(third_avg_employ, aes(x=reorder(Industry, -avg_empl), avg_empl)) + geom_bar(stat="identity", width = 0.5, fill = "tomato2") + labs(x = "Companies", y = "Average Employees", title = "Average Employees by Company in NY\n") + theme(axis.text.x = element_text(hjust = 1, size=10)) + theme(axis.text.y = element_text(hjust = 1, size=5)) + geom_label(aes(label=third_avg_employ$avg_empl), position = position_dodge(width = 0.1), size = 1.8, label.padding = unit(0.1, "lines"), label.size = 0.07, inherit.aes = TRUE) + coord_flip()

Question 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

rev_employ_indust <- inc %>% filter(complete.cases(.)) %>% mutate(rev_empl = Revenue/Employees) %>% group_by(Industry) %>% summarise(med_rev_empl = round(median(rev_empl))) %>% arrange(desc(med_rev_empl))

head(rev_employ_indust)
## # A tibble: 6 x 2
##   Industry                     med_rev_empl
##   <fct>                               <dbl>
## 1 Computer Hardware                  516477
## 2 Logistics & Transportation         425024
## 3 Consumer Products & Services       313043
## 4 Retail                             312755
## 5 Telecommunications                 284000
## 6 Energy                             283212
ggplot(rev_employ_indust, aes(x=reorder(Industry, med_rev_empl), med_rev_empl)) + geom_bar(stat="identity", width = 0.5, fill = "tomato2") + labs(x = "Industry", y = "Median Revenue", title = "Median Revenue Per Employee by Industry\n") + theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8)) + theme(axis.text.y = element_text(hjust = 1, size=7)) + geom_label(aes(label=rev_employ_indust$med_rev_empl), position = position_dodge(width = 0.1), size = 1.8, label.padding = unit(0.1, "lines"), label.size = 0.07, inherit.aes = TRUE) + coord_flip()