## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows

I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:

And lets preview this data:

##   Rank                         Name Growth_Rate   Revenue
## 1    1                         Fuhu      421.48 1.179e+08
## 2    2        FederalConference.com      248.31 4.960e+07
## 3    3                The HCI Group      245.45 2.550e+07
## 4    4                      Bridger      233.08 1.900e+09
## 5    5                       DataXu      213.37 8.700e+07
## 6    6 MileStone Community Builders      179.38 4.570e+07
##                       Industry Employees         City State
## 1 Consumer Products & Services       104   El Segundo    CA
## 2          Government Services        51     Dumfries    VA
## 3                       Health       132 Jacksonville    FL
## 4                       Energy        50      Addison    TX
## 5      Advertising & Marketing       220       Boston    MA
## 6                  Real Estate        63       Austin    TX
summary(inc)
##       Rank                          Name       Growth_Rate     
##  Min.   :   1   (Add)ventures         :   1   Min.   :  0.340  
##  1st Qu.:1252   @Properties           :   1   1st Qu.:  0.770  
##  Median :2502   1-Stop Translation USA:   1   Median :  1.420  
##  Mean   :2502   110 Consulting        :   1   Mean   :  4.612  
##  3rd Qu.:3751   11thStreetCoffee.com  :   1   3rd Qu.:  3.290  
##  Max.   :5000   123 Exteriors         :   1   Max.   :421.480  
##                 (Other)               :4995                    
##     Revenue                                  Industry      Employees      
##  Min.   :2.000e+06   IT Services                 : 733   Min.   :    1.0  
##  1st Qu.:5.100e+06   Business Products & Services: 482   1st Qu.:   25.0  
##  Median :1.090e+07   Advertising & Marketing     : 471   Median :   53.0  
##  Mean   :4.822e+07   Health                      : 355   Mean   :  232.7  
##  3rd Qu.:2.860e+07   Software                    : 342   3rd Qu.:  132.0  
##  Max.   :1.010e+10   Financial Services          : 260   Max.   :66803.0  
##                      (Other)                     :2358   NA's   :12       
##             City          State     
##  New York     : 160   CA     : 701  
##  Chicago      :  90   TX     : 387  
##  Austin       :  88   NY     : 311  
##  Houston      :  76   VA     : 283  
##  San Francisco:  75   FL     : 282  
##  Atlanta      :  74   IL     : 273  
##  (Other)      :4438   (Other):2764

Exploratory Analysis

Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

# Let's check on the structure and show sample data for each variable.
str(inc)
## 'data.frame':    5001 obs. of  8 variables:
##  $ Rank       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Name       : Factor w/ 5001 levels "(Add)ventures",..: 1770 1633 4423 690 1198 2839 4733 1468 1869 4968 ...
##  $ Growth_Rate: num  421 248 245 233 213 ...
##  $ Revenue    : num  1.18e+08 4.96e+07 2.55e+07 1.90e+09 8.70e+07 ...
##  $ Industry   : Factor w/ 25 levels "Advertising & Marketing",..: 5 12 13 7 1 20 10 1 5 21 ...
##  $ Employees  : int  104 51 132 50 220 63 27 75 97 15 ...
##  $ City       : Factor w/ 1519 levels "Acton","Addison",..: 391 365 635 2 139 66 912 1179 131 1418 ...
##  $ State      : Factor w/ 52 levels "AK","AL","AR",..: 5 47 10 45 20 45 44 5 46 41 ...
## [1] "Number of Rows in Dataframe: 5,001"
## [1] "Number of Columns in Dataframe: 8"
# Number of Distinct values for the variable "Industry".
with(inc, table(Industry))
## Industry
##      Advertising & Marketing Business Products & Services 
##                          471                          482 
##            Computer Hardware                 Construction 
##                           44                          187 
## Consumer Products & Services                    Education 
##                          203                           83 
##                       Energy                  Engineering 
##                          109                           74 
##       Environmental Services           Financial Services 
##                           51                          260 
##              Food & Beverage          Government Services 
##                          131                          202 
##                       Health              Human Resources 
##                          355                          196 
##                    Insurance                  IT Services 
##                           50                          733 
##   Logistics & Transportation                Manufacturing 
##                          155                          256 
##                        Media                  Real Estate 
##                           54                           96 
##                       Retail                     Security 
##                          203                           73 
##                     Software           Telecommunications 
##                          342                          129 
##         Travel & Hospitality 
##                           62
# Maximum Revenue
max<-inc %>% slice(which.max(Revenue))
max
##   Rank Name Growth_Rate  Revenue          Industry Employees         City State
## 1 4788  CDW        0.41 1.01e+10 Computer Hardware      6800 Vernon Hills    IL
# Minimum Revenue
min<-inc %>% slice(which.min(Revenue))
min
##   Rank                    Name Growth_Rate Revenue            Industry
## 1  246 Cardinal Point Captains       17.65   2e+06 Government Services
##   Employees     City State
## 1        30 Carlsbad    CA
#  Standard deviation in Revenue 
sd(inc$Revenue)
## [1] 240542281
# Standard deviation in Growth_Rate
sd(inc$Growth_Rate)
## [1] 14.12369

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.

head(inc1)
## Warning: `...` is not empty.
## 
## We detected these problematic arguments:
## * `needs_dots`
## 
## These dots only exist to allow future extensions and should be empty.
## Did you misspecify an argument?
## # A tibble: 6 x 2
##   State     n
##   <fct> <int>
## 1 CA      701
## 2 TX      387
## 3 NY      311
## 4 VA      283
## 5 FL      282
## 6 IL      273
dist

Quesiton 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

NY <-inc[complete.cases(inc),]%>%
  filter(State == "NY") 
head(NY)
##   Rank                      Name Growth_Rate  Revenue
## 1   26              BeenVerified       84.43 13700000
## 2   30                  Sailthru       73.22  8100000
## 3   37              YellowHammer       67.40 18000000
## 4   38                 Conductor       67.02  7100000
## 5   48 Cinium Financial Services       53.65  5900000
## 6   70                  33Across       44.99 27900000
##                       Industry Employees      City State
## 1 Consumer Products & Services        17  New York    NY
## 2      Advertising & Marketing        79  New York    NY
## 3      Advertising & Marketing        27  New York    NY
## 4      Advertising & Marketing        89  New York    NY
## 5           Financial Services        32 Rock Hill    NY
## 6      Advertising & Marketing        75  New York    NY
ggplot(NY, aes(x= Employees, y=Industry)) + geom_boxplot(fill="slateblue", alpha=0.9, outlier.size = -1) + xlim(0,1000)
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).

ggplot(
  Mean, aes(x =  reorder(Industry, -avg), y = avg)) + 
  geom_bar(stat="identity", width=0.5, fill="#1F3552") +
  ggtitle("Average Employment by Industry in NY")+
  labs(x="Industry",y="Mean")+  theme(axis.text.x = element_text(angle = 60, hjust = 1))

Quesiton 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

ggplot(
  b, aes(x =  reorder(Industry, -AvgRev), y = AvgRev)) + 
  geom_bar(stat="identity", width=0.5, fill="#1F3552") +
  ggtitle("Revenue Per Employee in NY")+
  labs(x="Industry",y="Mean")+  theme(axis.text.x = element_text(angle = 60, hjust = 1))