b
The Maximum likelyhood estimate MLE of \(\pi = 0.75\)
225/300
## [1] 0.75
library(binom)
binom.confint(225, 300, conf.level = 0.95, method ="asymptotic")
## method x n mean lower upper
## 1 asymptotic 225 300 0.75 0.7010009 0.7989991
binom.confint(225, 300, conf.level = 0.95, method ="wilson")
## method x n mean lower upper
## 1 wilson 225 300 0.75 0.6980484 0.7956301
8.a. The null hypothesis \(H_{0}: \pi = 0.5\)
8.b. The alternative hypothesis \(H_{a} \neq 0.5\)
8.c. The Wald test statistic is 100
z <- (0.75 - 0.5)/sqrt(0.75 *(1 - 0.75)/300) # Wald stat
z^2 # Wald
## [1] 100
pchisq(z^2, df = 1, lower.tail = FALSE) # p. value
## [1] 1.523971e-23
8.d. The degree of freedom for the Wald test is 1
8.e. Yes. The p.value is less than 0.05
8.f. The value of the score test statistic is 8.66
(0.75 - 0.5)/sqrt(0.5 *(1 - 0.5)/300)
## [1] 8.660254
8.g. False. We do reject the null hypothesis, using the score test statistic
The null hypothesis \(H_{0}: \pi > 0.5\)
False. Based on the the result in 8 we infer that the majority wold say either Yes or No.
11.a. The value of the score test chi-square variate is 4.5
11.b. The p.value is 0.017
prop.test(7, 8, p=0.5, alternative = "greater", correct=FALSE)
## Warning in prop.test(7, 8, p = 0.5, alternative = "greater", correct = FALSE):
## Chi-squared approximation may be incorrect
##
## 1-sample proportions test without continuity correction
##
## data: 7 out of 8, null probability 0.5
## X-squared = 4.5, df = 1, p-value = 0.01695
## alternative hypothesis: true p is greater than 0.5
## 95 percent confidence interval:
## 0.5888566 1.0000000
## sample estimates:
## p
## 0.875
12.a. The p.value is 0.035
binom.test(7, 8, 0.5, alternative = "greater")
##
## Exact binomial test
##
## data: 7 and 8
## number of successes = 7, number of trials = 8, p-value = 0.03516
## alternative hypothesis: true probability of success is greater than 0.5
## 95 percent confidence interval:
## 0.5293206 1.0000000
## sample estimates:
## probability of success
## 0.875
12.b. Yes. The nul hypothesis is rejected.
13.a. The p-value is 0.019
library(exactci)
## Loading required package: ssanv
##
## Attaching package: 'exactci'
## The following object is masked from 'package:binom':
##
## binom.exact
binom.exact(7, 8, alternative = "greater", midp = TRUE)
##
## Exact one-sided binomial test, mid-p version
##
## data: 7 and 8
## number of successes = 7, number of trials = 8, p-value = 0.01953
## alternative hypothesis: true probability of success is greater than 0.5
## 95 percent confidence interval:
## 0.5801644 1.0000000
## sample estimates:
## probability of success
## 0.875
13.b. Yes. The result is significant at the alpha level of 0.05
13
(0.52, 0.99)
library(PropCIs)
midPci(7, 8, 0.95)
##
##
##
## data:
##
## 95 percent confidence interval:
## 0.5201 0.9936
16.a. For Jeffrey’s prior, \(\alpha = 0.5, \beta = 0.5\)
16.b. conjugate
16.c. \(\alpha^* = y + \alpha, \beta^* = n - y + \beta\)
16.d. The EAP parameters, \(\pi = 0.83\)
7 + 0.5 # alpha*
## [1] 7.5
8 - 7 + 0.5 # beta*
## [1] 1.5
7.5/(7.5 + 1.5)
## [1] 0.8333333
16.e. The 95% posterior credibility interval is (0.55, 0.99)
qbeta(0.025, 7.5, 1.5)
## [1] 0.5462807
qbeta(0.975, 7.5, 1.5)
## [1] 0.9861618
16.f. True
16.g. False
16.h. True
90/301
## [1] 0.2990033
224/301
## [1] 0.744186
141/301
## [1] 0.4684385
134/160
## [1] 0.8375
(141/301) * (224/301)
## [1] 0.3486054
(141 * 224) / 301
## [1] 104.9302
prop.test(c(134, 90), c(160, 141), conf.level = 0.95, correct = FALSE)
##
## 2-sample test for equality of proportions without continuity
## correction
##
## data: c(134, 90) out of c(160, 141)
## X-squared = 15.623, df = 1, p-value = 7.732e-05
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.1014396 0.2969646
## sample estimates:
## prop 1 prop 2
## 0.8375000 0.6382979
Zero
The 95% score CI is (0.100, 0.296)
diffscoreci(134, 160, 90, 141, conf.level = 0.95)
##
##
##
## data:
##
## 95 percent confidence interval:
## 0.1009379 0.2966407
(134/160) / (90/141)
## [1] 1.312083
riskscoreci(134, 160, 90, 141, conf.level = 0.95)
##
##
##
## data:
##
## 95 percent confidence interval:
## 1.145359 1.525178
Yes
The odd of Yes response for females is 5.153
The odd of Yes response for males is 1.8
odd_f <- (134/160) / (1 - (134/160))
odd_f
## [1] 5.153846
odd_m <- (90/140) / (1 - (90/140))
odd_m
## [1] 1.8
odd_f / odd_m
## [1] 2.863248
The odd of Yes in the female group are 2.863 times the odds of Yes in the male group, indicating Yes is more likely in the female group than in the male group.
The 95% CI for the population odds ratio is (1.697, 5.024)
library(epitools)
##
## Attaching package: 'epitools'
## The following object is masked from 'package:exactci':
##
## binom.exact
## The following objects are masked from 'package:binom':
##
## binom.exact, binom.wilson
oddsratio(c(134, 90, 26, 51), method ="wald", conf = 0.95, correct = FALSE)
## $data
## Outcome
## Predictor Disease1 Disease2 Total
## Exposed1 134 90 224
## Exposed2 26 51 77
## Total 160 141 301
##
## $measure
## odds ratio with 95% C.I.
## Predictor estimate lower upper
## Exposed1 1.000000 NA NA
## Exposed2 2.920513 1.697494 5.024699
##
## $p.value
## two-sided
## Predictor midp.exact fisher.exact chi.square
## Exposed1 NA NA NA
## Exposed2 8.317185e-05 0.0001083532 7.73227e-05
##
## $correction
## [1] FALSE
##
## attr(,"method")
## [1] "Unconditional MLE & normal approximation (Wald) CI"
… with the value of 50/50 chance .. The value is 1
cross-sectional
20.a. \(X^2 = 14.594\)
belief <- data.frame(Yes =c(134,90), No = c(26,51))
row.names(belief) = c("females", "males")
belief
## Yes No
## females 134 26
## males 90 51
belief.test <- chisq.test(belief)
belief.test
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: belief
## X-squared = 14.594, df = 1, p-value = 0.0001334
20.b. Yes
20.c. The standardized residuals for females and yes is 3.952
belief.test$stdres
## Yes No
## females 3.95255 -3.95255
## males -3.95255 3.95255
20.d. Yes responses dominant for females and less dominant for males
22.a. \(X^2 = 147.98\)
school <- data.frame(fail = c(36, 8, 1, 0), pass = c(14, 67, 127, 32))
row.names(school) <- c("below.basic", "basic", "proficient", "advanced")
school
## fail pass
## below.basic 36 14
## basic 8 67
## proficient 1 127
## advanced 0 32
chisq.test(school)
##
## Pearson's Chi-squared test
##
## data: school
## X-squared = 147.98, df = 3, p-value < 2.2e-16
22.b. The degree of freedom is 3
22.c. Yes. Reject the null hypothesis
23.a. The value of the \(M^2\) is 105.4
library(vcdExtra)
## Loading required package: vcd
## Loading required package: grid
##
## Attaching package: 'vcd'
## The following object is masked from 'package:epitools':
##
## oddsratio
## Loading required package: gnm
##
## Attaching package: 'vcdExtra'
## The following object is masked from 'package:epitools':
##
## expand.table
school2 <- matrix(c(36, 8, 1, 0, 14, 67, 127, 32), ncol = 2)
school2
## [,1] [,2]
## [1,] 36 14
## [2,] 8 67
## [3,] 1 127
## [4,] 0 32
CMHtest(school2, rscore = c(1, 2, 3, 4))
## Cochran-Mantel-Haenszel Statistics
##
## AltHypothesis Chisq Df Prob
## cor Nonzero correlation 105.04 1 1.1971e-24
## rmeans Row mean scores differ 147.46 3 9.3047e-32
## cmeans Col mean scores differ 105.04 1 1.1971e-24
## general General association 147.46 3 9.3047e-32
23.b. Yes. Reject.