Para comenzar, debemos importar las librerías y paquetes que nos indica la tarea serán necesarias para ejecutar el código
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
## ✓ tibble 3.0.6 ✓ stringr 1.4.0
## ✓ tidyr 1.1.2 ✓ forcats 0.5.1
## ✓ readr 1.4.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(nycflights13)
Después importamos la base de datos que utilizaremos para el ejercicio
data(flights)
A partir de qauí, el cógio nos ayudará a responder cada pregunta. Esta parte en específico nos arrojará el tipo de datos que se encuentran dentro de nuestro data set. num = Cualquier número entero chr = Una agrupación de caracteres/ texto dbl = Significa “doble clase” porque cuenta con dos nñumeros de precision, mejor conocidos como decimales. Por lo tanto se usa para cualuqier número que tenga punto decimal ddtm= Este dato combina date y time en uno mismo: Identifica de forma única un instante en el tiempo
str(flights)
## tibble [336,776 × 19] (S3: tbl_df/tbl/data.frame)
## $ year : int [1:336776] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
## $ month : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
## $ day : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
## $ dep_time : int [1:336776] 517 533 542 544 554 554 555 557 557 558 ...
## $ sched_dep_time: int [1:336776] 515 529 540 545 600 558 600 600 600 600 ...
## $ dep_delay : num [1:336776] 2 4 2 -1 -6 -4 -5 -3 -3 -2 ...
## $ arr_time : int [1:336776] 830 850 923 1004 812 740 913 709 838 753 ...
## $ sched_arr_time: int [1:336776] 819 830 850 1022 837 728 854 723 846 745 ...
## $ arr_delay : num [1:336776] 11 20 33 -18 -25 12 19 -14 -8 8 ...
## $ carrier : chr [1:336776] "UA" "UA" "AA" "B6" ...
## $ flight : int [1:336776] 1545 1714 1141 725 461 1696 507 5708 79 301 ...
## $ tailnum : chr [1:336776] "N14228" "N24211" "N619AA" "N804JB" ...
## $ origin : chr [1:336776] "EWR" "LGA" "JFK" "JFK" ...
## $ dest : chr [1:336776] "IAH" "IAH" "MIA" "BQN" ...
## $ air_time : num [1:336776] 227 227 160 183 116 150 158 53 140 138 ...
## $ distance : num [1:336776] 1400 1416 1089 1576 762 ...
## $ hour : num [1:336776] 5 5 5 5 6 5 6 6 6 6 ...
## $ minute : num [1:336776] 15 29 40 45 0 58 0 0 0 0 ...
## $ time_hour : POSIXct[1:336776], format: "2013-01-01 05:00:00" "2013-01-01 05:00:00" ...
Después, esta funcion nos indicará de que flight es un tbl, lo cual significa que se trata de una tabla tabular, cuyos argumentos sin precisamente los datos.
class(flights)
## [1] "tbl_df" "tbl" "data.frame"
La siguiente función nos indicará el número de variables, en este caso columnas, que tiene la base de datos.
ncol(flights)
## [1] 19
La siguiente función nos indicará el número de observaciones, en este caso registros, que tiene la base de datos
nrow(flights)
## [1] 336776
Después, con la función siguiente se calcula la dimensión del data set, es decir un conjunto de columnas y registros (los cuales ya identificamos antes)
dim(flights)
## [1] 336776 19
Lo siguiente que haremos será visualizar todo el data frame de flights.
view(flights)
Después generaremos 2 diferentes outputs de flights. El primero nos arrojará los primeros 50 registros de vuelos
head(flights,50)
## # A tibble: 50 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # … with 40 more rows, and 11 more variables: arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
## # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
Y el segundo los últimos 20
tail(flights,20)
## # A tibble: 20 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 9 30 2150 2159 -9 2250 2306
## 2 2013 9 30 2159 1845 194 2344 2030
## 3 2013 9 30 2203 2205 -2 2339 2331
## 4 2013 9 30 2207 2140 27 2257 2250
## 5 2013 9 30 2211 2059 72 2339 2242
## 6 2013 9 30 2231 2245 -14 2335 2356
## 7 2013 9 30 2233 2113 80 112 30
## 8 2013 9 30 2235 2001 154 59 2249
## 9 2013 9 30 2237 2245 -8 2345 2353
## 10 2013 9 30 2240 2245 -5 2334 2351
## 11 2013 9 30 2240 2250 -10 2347 7
## 12 2013 9 30 2241 2246 -5 2345 1
## 13 2013 9 30 2307 2255 12 2359 2358
## 14 2013 9 30 2349 2359 -10 325 350
## 15 2013 9 30 NA 1842 NA NA 2019
## 16 2013 9 30 NA 1455 NA NA 1634
## 17 2013 9 30 NA 2200 NA NA 2312
## 18 2013 9 30 NA 1210 NA NA 1330
## 19 2013 9 30 NA 1159 NA NA 1344
## 20 2013 9 30 NA 840 NA NA 1020
## # … with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
Por último, el código encontrará los resultados descriptivos de las variables de nuestro data frames. Por lo cual podremos identificar el promedio, modam mínimo y máximo.
summary(flights)
## year month day dep_time sched_dep_time
## Min. :2013 Min. : 1.000 Min. : 1.00 Min. : 1 Min. : 106
## 1st Qu.:2013 1st Qu.: 4.000 1st Qu.: 8.00 1st Qu.: 907 1st Qu.: 906
## Median :2013 Median : 7.000 Median :16.00 Median :1401 Median :1359
## Mean :2013 Mean : 6.549 Mean :15.71 Mean :1349 Mean :1344
## 3rd Qu.:2013 3rd Qu.:10.000 3rd Qu.:23.00 3rd Qu.:1744 3rd Qu.:1729
## Max. :2013 Max. :12.000 Max. :31.00 Max. :2400 Max. :2359
## NA's :8255
## dep_delay arr_time sched_arr_time arr_delay
## Min. : -43.00 Min. : 1 Min. : 1 Min. : -86.000
## 1st Qu.: -5.00 1st Qu.:1104 1st Qu.:1124 1st Qu.: -17.000
## Median : -2.00 Median :1535 Median :1556 Median : -5.000
## Mean : 12.64 Mean :1502 Mean :1536 Mean : 6.895
## 3rd Qu.: 11.00 3rd Qu.:1940 3rd Qu.:1945 3rd Qu.: 14.000
## Max. :1301.00 Max. :2400 Max. :2359 Max. :1272.000
## NA's :8255 NA's :8713 NA's :9430
## carrier flight tailnum origin
## Length:336776 Min. : 1 Length:336776 Length:336776
## Class :character 1st Qu.: 553 Class :character Class :character
## Mode :character Median :1496 Mode :character Mode :character
## Mean :1972
## 3rd Qu.:3465
## Max. :8500
##
## dest air_time distance hour
## Length:336776 Min. : 20.0 Min. : 17 Min. : 1.00
## Class :character 1st Qu.: 82.0 1st Qu.: 502 1st Qu.: 9.00
## Mode :character Median :129.0 Median : 872 Median :13.00
## Mean :150.7 Mean :1040 Mean :13.18
## 3rd Qu.:192.0 3rd Qu.:1389 3rd Qu.:17.00
## Max. :695.0 Max. :4983 Max. :23.00
## NA's :9430
## minute time_hour
## Min. : 0.00 Min. :2013-01-01 05:00:00
## 1st Qu.: 8.00 1st Qu.:2013-04-04 13:00:00
## Median :29.00 Median :2013-07-03 10:00:00
## Mean :26.23 Mean :2013-07-03 05:22:54
## 3rd Qu.:44.00 3rd Qu.:2013-10-01 07:00:00
## Max. :59.00 Max. :2013-12-31 23:00:00
##