Calculs élémentaires
1+1
[1] 2
23*786
[1] 18078
log(10)
[1] 2.302585
log10(10)
[1] 1
Les variables
x<-2 # Affectation je mets 2 dans la variable x
x # Je demande d'afficher x
[1] 2
x<-5 # Affectation je mets 5 dans la variable x
x # Je demande d'afficher x
[1] 5
x^2
[1] 25
Les listes dans R
l1<-c(1,7,89)
l2<-c(12,-7,18)
l1+l2 # somme de deux listes
[1] 13 0 107
l1*l2 # produit de deux listes
[1] 12 -49 1602
100+l1
[1] 101 107 189
100+3*l1
[1] 103 121 367
l3<-c(2,6,8,9)
sum(1:100) # somme des n premiers entiers
[1] 5050
100*101/2 # somme des n premiers entiers avec la formule
[1] 5050
sum((1:100)^2) # somme des n premiers carrés
[1] 338350
100*101*201/6 # somme des n premiers carrés avec la formule
[1] 338350
Renommer des variables
names(Journals)[1:5]
names(Journals)[names(Journals)=="title"]<-c("Titre")
names(Journals)[8]<-c("Année de création")
names(Journals)
names(Journals)[names(Journals)=="subs"]<-c("Abonnements")
names(Journals)[c(2,4,10)]<-c("Editeur","Prix","Domaine")
Journals$Titre
Journals[,1]
Journals[60,1]

LS0tCnRpdGxlOiAiSW50cm9kdWN0aW9uIMOgIFJTdHVkaW8iCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgdG9jOiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKICAgIGRmX3ByaW50OiBwYWdlZAogIHdvcmRfZG9jdW1lbnQ6CiAgICB0b2M6IHllcwogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCi0tLQoKIyBDYWxjdWxzIMOpbMOpbWVudGFpcmVzCgoKYGBge3J9CjErMQoyMyo3ODYKbG9nKDEwKQpsb2cxMCgxMCkKYGBgCiMgTGVzIHZhcmlhYmxlcwoKCmBgYHtyfQp4PC0yICMgQWZmZWN0YXRpb24gamUgbWV0cyAyIGRhbnMgbGEgdmFyaWFibGUgeAp4ICMgSmUgZGVtYW5kZSBkJ2FmZmljaGVyIHgKeDwtNSAgIyBBZmZlY3RhdGlvbiBqZSBtZXRzIDUgZGFucyBsYSB2YXJpYWJsZSB4CnggICAjIEplIGRlbWFuZGUgZCdhZmZpY2hlciB4CnheMgoKYGBgCgojIExlcyBsaXN0ZXMgZGFucyBSCgpgYGB7cn0KbDE8LWMoMSw3LDg5KQpsMjwtYygxMiwtNywxOCkKbDErbDIgIyBzb21tZSBkZSBkZXV4IGxpc3RlcwpsMSpsMiAjIHByb2R1aXQgZGUgZGV1eCBsaXN0ZXMKMTAwK2wxCjEwMCszKmwxCmwzPC1jKDIsNiw4LDkpCnN1bSgxOjEwMCkgIyBzb21tZSBkZXMgbiBwcmVtaWVycyBlbnRpZXJzCjEwMCoxMDEvMiAjIHNvbW1lIGRlcyBuIHByZW1pZXJzIGVudGllcnMgYXZlYyBsYSBmb3JtdWxlCnN1bSgoMToxMDApXjIpICAgICAgICAgICMgc29tbWUgZGVzIG4gcHJlbWllcnMgY2FycsOpcwoxMDAqMTAxKjIwMS82ICAgICAgICAgICAgICAgICMgc29tbWUgZGVzIG4gcHJlbWllcnMgY2FycsOpcyBhdmVjIGxhIGZvcm11bGUKYGBgCgogIAojIEVjcmlyZSBkZXMgZm9ybXVsZXMgbWF0aMOpbWF0aXF1ZXMKICAKT24gcGV1dCDDqWNyaXJlIGF2ZWMgbGUgbGFuZ3VhZ2UgTEFURVgKCiQkClxzdW1fe2k9MX1ee259aT0xKzIrXGNkb3RzK249XGZyYWN7bihuKzEpfXsyfQokJCAgCiAgCiAgCgokJApcc3VtX3tpPTF9XntufWleMj0xXjIrMl4yK1xjZG90cytuXjI9XGZyYWN7bihuKzEpKDJuKzEpfXs2fQokJCAgCiMgSW5zdGFsbGVyIGV0IGFwcGVsZXIgdW4gcGFja2FnZSAKCmBgYHtyfQpsaWJyYXJ5KCJBRVIiKQpkYXRhKCJKb3VybmFscyIscGFja2FnZT0iQUVSIikKCmRpbShKb3VybmFscykKCgpgYGAKIyBSZW5vbW1lciBkZXMgdmFyaWFibGVzCgpgYGB7cn0KbmFtZXMoSm91cm5hbHMpWzE6NV0KCm5hbWVzKEpvdXJuYWxzKVtuYW1lcyhKb3VybmFscyk9PSJ0aXRsZSJdPC1jKCJUaXRyZSIpCm5hbWVzKEpvdXJuYWxzKVs4XTwtYygiQW5uw6llIGRlIGNyw6lhdGlvbiIpCm5hbWVzKEpvdXJuYWxzKQpuYW1lcyhKb3VybmFscylbbmFtZXMoSm91cm5hbHMpPT0ic3VicyJdPC1jKCJBYm9ubmVtZW50cyIpCm5hbWVzKEpvdXJuYWxzKVtjKDIsNCwxMCldPC1jKCJFZGl0ZXVyIiwiUHJpeCIsIkRvbWFpbmUiKQpKb3VybmFscyRUaXRyZQpKb3VybmFsc1ssMV0KSm91cm5hbHNbNjAsMV0KCmBgYAoKCgpgYGB7cn0KZGF0YSgiSm91cm5hbHMiLHBhY2thZ2U9IkFFUiIpCgpwbG90KGxvZyhzdWJzKX5sb2cocHJpY2UvY2l0YXRpb25zKSxkYXRhPUpvdXJuYWxzLG1haW49IkRlbWFuZCBmb3IgSm91cm5hbHMiLGNvbD0icmVkIikKCgpgYGAKCgoKCgo=