library(rmarkdown); library(knitr)
library(dplyr)
library(psych); library(corrplot); library(GPArotation)
library(lavaan); library(semPlot); library(moments)
POVERTYDATA <- read.csv("https://www.dropbox.com/s/2hfzxyj3623v2fq/?dl=1")
attach(POVERTYDATA)
set.seed(37)
Identify the likely population of interest
The likely population of interest of this data would be world leaders. They could use this data to help identify what leads to high poverty rates in specific areas and addressing these issues leading to lower poverty rates in the future.
Identify if this sample is random, systematic, or voluntary
This sample appears to be a random sample of countries.
What command would you use to extract the percent of the population deprived of ELECTRICITY for each country?
POVERTYDATA$ELECTRICITY
## [1] 0.1 0.0 0.0 1.9 0.0 0.3 0.0 0.0 0.0 0.0 39.8 0.5 0.0 0.0
## [15] 0.0 8.6 0.0 0.0 0.0 0.0 0.0 0.2 0.0 58.7 0.0 0.0 0.0 0.0
## [29] 0.0 0.0 0.0 27.4 0.0 0.0 0.0 0.0 0.1
Compute the mean and standard deviation of the percent of the population deprived of ELECTRICITY
mean(POVERTYDATA$ELECTRICITY)
## [1] 3.718919
sd(POVERTYDATA$ELECTRICITY)
## [1] 12.1869
Use the mean and standard deviation above to compute the z-scores for the percent of the population deprived of ELECTRICITY
zelec = (POVERTYDATA$ELECTRICITY-mean(POVERTYDATA$ELECTRICITY))/sd(POVERTYDATA$ELECTRICITY)
zelec
## [1] -0.2969516 -0.3051572 -0.3051572 -0.1492520 -0.3051572 -0.2805406
## [7] -0.3051572 -0.3051572 -0.3051572 -0.3051572 2.9606454 -0.2641295
## [13] -0.3051572 -0.3051572 -0.3051572 0.4005188 -0.3051572 -0.3051572
## [19] -0.3051572 -0.3051572 -0.3051572 -0.2887461 -0.3051572 4.5114913
## [25] -0.3051572 -0.3051572 -0.3051572 -0.3051572 -0.3051572 -0.3051572
## [31] -0.3051572 1.9431592 -0.3051572 -0.3051572 -0.3051572 -0.3051572
## [37] -0.2969516
Explain what the z-scores above mean in terms of the presence or absence of outliers among these countries
Outliers are Z scores with a high absolute value. In this data there appears to be an outlier with a z score of over 4.5.
Explain what the z-score for the first country (Albania) means in terms of standard deviations
There Zscore is about -.3 which means that Albania has a slightly lower than average rate of people deprivedd of electricity.
Use subset() to create a new data frame that only includes countries that are outliers in the percent of the population deprived of ELECTRICITY
subset(POVERTYDATA, abs(zelec)>3.29, select = NAME:HEMISPHERE)
## NAME CODE WATER ELECTRICITY SANITATION EDUCATION HEMISPHERE
## 24 Lesotho LSO 13.7 58.7 55.1 18.1 1
Use matrix notation to create a new data frame that only includes the four continuous numeric measures of poverty
povertymatrix1<- POVERTYDATA[1:37,c(1,3,4,5,6)]
povertymatrix1
## NAME WATER ELECTRICITY SANITATION EDUCATION
## 1 Albania 9.3 0.1 7.0 0.3
## 2 Austria 0.5 0.0 0.7 0.0
## 3 Belgium 0.3 0.0 0.9 1.9
## 4 Bhutan 0.4 1.9 13.7 40.8
## 5 Bulgaria 9.4 0.0 15.3 0.7
## 6 Chile 0.1 0.3 0.6 4.0
## 7 Croatia 1.2 0.0 1.3 0.3
## 8 Cyprus 0.5 0.0 0.5 1.4
## 9 Czech Republic 0.3 0.0 0.5 0.0
## 10 Denmark 1.9 0.0 0.4 0.4
## 11 Djibouti 7.1 39.8 45.4 30.1
## 12 Egypt, Arab Rep. 0.8 0.5 3.2 10.6
## 13 Estonia 6.6 0.0 5.3 0.0
## 14 Finland 0.4 0.0 0.4 1.5
## 15 France 0.6 0.0 0.5 1.5
## 16 Gabon 11.5 8.6 68.2 11.3
## 17 Greece 0.5 0.0 0.3 1.7
## 18 Hungary 3.6 0.0 3.8 0.0
## 19 Iran, Islamic Rep. 1.6 0.0 2.0 4.4
## 20 Italy 0.5 0.0 0.6 1.3
## 21 Kazakhstan 1.5 0.0 0.9 0.0
## 22 Kosovo 0.7 0.2 1.4 0.5
## 23 Latvia 11.9 0.0 10.0 0.1
## 24 Lesotho 13.7 58.7 55.1 18.1
## 25 Lithuania 9.9 0.0 10.6 0.2
## 26 Luxembourg 0.2 0.0 0.0 0.8
## 27 Malta 0.1 0.0 0.1 0.2
## 28 Moldova 0.5 0.0 0.0 0.1
## 29 Netherlands 0.1 0.0 0.0 1.1
## 30 Norway 0.3 0.0 0.0 2.1
## 31 Portugal 0.9 0.0 0.8 2.4
## 32 Sao Tome and Principe 8.8 27.4 62.1 20.2
## 33 Slovenia 0.2 0.0 0.2 0.0
## 34 Spain 0.2 0.0 0.2 3.4
## 35 Sweden 0.1 0.0 0.0 0.9
## 36 Switzerland 0.1 0.0 0.0 0.0
## 37 Thailand 0.9 0.1 0.2 14.8
Use cbind() to create a new data frame that only includes measures of ELECTRICITY and SANITATION for each country
cbind(ELECTRICITY,SANITATION)
## ELECTRICITY SANITATION
## [1,] 0.1 7.0
## [2,] 0.0 0.7
## [3,] 0.0 0.9
## [4,] 1.9 13.7
## [5,] 0.0 15.3
## [6,] 0.3 0.6
## [7,] 0.0 1.3
## [8,] 0.0 0.5
## [9,] 0.0 0.5
## [10,] 0.0 0.4
## [11,] 39.8 45.4
## [12,] 0.5 3.2
## [13,] 0.0 5.3
## [14,] 0.0 0.4
## [15,] 0.0 0.5
## [16,] 8.6 68.2
## [17,] 0.0 0.3
## [18,] 0.0 3.8
## [19,] 0.0 2.0
## [20,] 0.0 0.6
## [21,] 0.0 0.9
## [22,] 0.2 1.4
## [23,] 0.0 10.0
## [24,] 58.7 55.1
## [25,] 0.0 10.6
## [26,] 0.0 0.0
## [27,] 0.0 0.1
## [28,] 0.0 0.0
## [29,] 0.0 0.0
## [30,] 0.0 0.0
## [31,] 0.0 0.8
## [32,] 27.4 62.1
## [33,] 0.0 0.2
## [34,] 0.0 0.2
## [35,] 0.0 0.0
## [36,] 0.0 0.0
## [37,] 0.1 0.2
Use plot() to generate a scatter plot of the association between ELECTRICITY and SANITATION
plot(ELECTRICITY,SANITATION)
Explain what the scatter plot above means in terms of the strength, direction, and shape of the association between ELECTRICITY and SANITATION
there is a large cluster of points at electricity =0 and then four outliers when electricity<10. To me this shows very little association between the two, Except if Electricity is high so is Sanitation.
Use cor() to compute the correlation coefficient between ELECTRICITY and SANITATION
cor(ELECTRICITY,SANITATION)
## [1] 0.7828934
Explain what the correlation coefficient above means in terms of the strength and direction of the association between ELECTRICITY and SANITATION
The correlation coefficient of over .78 indicates a strong relation between electricity and sanitation. this means that if the poverty rate of electricity is high then it is likely that their poverty rate for sanitation is high and vice a versa.
Use sample_n() to take a random sample, with replacement, of the sampled countries and compute the correlation between ELECTRICITY and SANITATION for this bootstrap sample
samp<- slice_sample(POVERTYDATA,n=37,replace=TRUE)
cor(samp$ELECTRICITY,samp$SANITATION)
## [1] 0.9136431
Use replicate() to repeat the process above 1000 times and display the resulting 1000 correlation coefficients for each of the 1000 bootstrap samples
boot<-replicate(n=1000,{samp<- slice_sample(POVERTYDATA,n=37,replace=TRUE)
cor(samp$ELECTRICITY,samp$SANITATION)
})
boot
## [1] 0.913700674 0.968497661 0.908322031 0.846288881 0.736694578
## [6] 0.798753945 0.958300936 0.965081942 0.934225231 0.694299538
## [11] 0.953528111 0.879349449 0.759921304 0.810844438 0.794480413
## [16] 0.870002163 0.893703902 0.973230241 0.734091180 0.646473078
## [21] 0.767898814 0.926073043 0.669867490 0.682079737 0.808200382
## [26] 0.769975970 0.893746000 0.820969705 0.778956677 0.956559179
## [31] 0.683537479 0.737577163 0.875333357 0.892431152 0.700529165
## [36] 0.886186955 0.843827519 0.883302249 0.971955916 0.897236397
## [41] 0.716493991 0.757949129 0.779297144 0.967313894 0.877979196
## [46] 0.942206408 0.826622555 0.791441000 0.743091329 0.676270620
## [51] 0.921307679 0.804006699 0.795953334 0.792477558 0.800948634
## [56] 0.770796666 0.821036235 0.747116045 0.849964406 0.785013508
## [61] 0.680674377 0.771686963 0.757433476 0.895761217 0.962746473
## [66] 0.893527344 0.865180108 0.921530491 0.756518938 0.808842043
## [71] 0.676256744 0.748032893 0.775012132 0.807461162 0.789648607
## [76] 0.820943199 0.772427519 0.747098229 0.839259399 0.749966187
## [81] 0.974879903 0.975201755 0.746904472 0.842303559 0.614037933
## [86] 0.797781566 0.957779766 0.816536815 0.949460130 0.915358402
## [91] 0.811173316 0.902132100 0.926889327 0.713218254 0.744387919
## [96] 0.774236101 0.897862966 0.829285799 0.926225417 0.804769810
## [101] 0.829750499 0.688411376 0.634302746 0.816327026 0.925647673
## [106] 0.609344328 0.935540952 0.627939388 0.752048348 0.639211849
## [111] 0.787986498 0.905484940 0.791489810 0.897152944 0.905853075
## [116] 0.838306879 0.818223589 0.877592891 0.829331017 0.783218442
## [121] 0.966673729 0.903895474 0.717322027 0.673673607 0.952361211
## [126] 0.820298783 0.933289043 0.825415118 0.758033374 0.914097694
## [131] 0.840147614 0.863088774 0.782717633 0.894854063 0.914811324
## [136] 0.882735031 0.885501379 0.983579703 0.763423870 0.790422917
## [141] 0.816849387 0.861796780 0.927777415 0.881041253 0.829537255
## [146] 0.889424297 0.826840066 0.695148736 0.986913941 0.728771444
## [151] 0.824332220 0.817215014 0.970832701 0.692791811 0.842162627
## [156] 0.819275619 0.692965953 0.746049429 0.889262359 0.776929007
## [161] 0.810755750 0.970108002 0.948018799 0.961390625 0.779429774
## [166] 0.778718900 0.777360162 0.821233385 0.425852391 0.918720921
## [171] 0.768226700 0.632530907 0.798898089 0.911722438 0.637882490
## [176] 0.748946155 0.974356748 0.981281955 0.911983647 0.962168761
## [181] 0.675784845 0.942679268 0.892738429 0.683196066 0.853478990
## [186] 0.688090046 0.809545166 0.924397988 0.764579457 0.621791617
## [191] 0.889387965 0.802398899 0.829574937 0.782751194 0.644122988
## [196] 0.983046140 0.936684980 0.969487142 0.778283230 0.893935975
## [201] 0.940609988 0.956740252 0.712671106 0.812869603 0.753846637
## [206] 0.450586920 0.906224412 0.719874130 0.764967313 0.948618340
## [211] 0.797378114 0.671351811 0.927908979 0.783019465 0.898179509
## [216] 0.898957427 0.757563186 0.826085743 0.743714964 0.699606565
## [221] 0.671016173 0.892873178 0.628081239 0.706218745 0.752640268
## [226] 0.889131142 0.767950940 0.864317034 0.796970415 0.966360076
## [231] 0.903951216 0.634360693 0.942357680 0.922440723 0.812007682
## [236] 0.914281884 0.831833361 0.930769082 0.718703934 -0.021530900
## [241] 0.877504454 0.785162659 0.698131288 0.981237141 0.958012860
## [246] 0.758866188 0.728669238 0.895977438 0.771272043 0.817637615
## [251] 0.892742101 0.841223884 0.917763481 0.832646186 0.770839519
## [256] 0.900465422 0.802952586 0.789329222 0.933417658 0.927484418
## [261] 0.887701382 0.940887156 0.639602621 0.910965611 0.913364838
## [266] 0.875827928 0.740330433 0.628168981 0.906162967 0.716518364
## [271] 0.744833220 0.836486678 0.879607748 0.903615570 0.903141352
## [276] 0.833503433 0.934766097 0.959575025 0.759619982 0.784306933
## [281] 0.733297377 0.631840488 0.897044880 0.992255299 0.764007910
## [286] 0.760365640 0.681286758 0.744640990 0.985158664 0.959137753
## [291] 0.805101017 0.702037535 0.773733683 0.748058843 0.952438218
## [296] 0.883514005 0.676505886 0.848737423 0.724272993 0.624069179
## [301] 0.709804936 0.779009636 0.686322823 0.654623968 0.840903682
## [306] 0.836137831 0.778512486 0.814158005 0.660941438 0.900420661
## [311] 0.836197791 0.940448835 0.888627619 0.973676900 0.721773329
## [316] 0.753781843 0.727411174 0.922571796 0.811012072 0.931693657
## [321] 0.675526065 0.795752469 0.902688312 0.978803508 0.755039619
## [326] 0.977516127 0.889508102 0.898138104 0.600375806 0.928329815
## [331] 0.835061481 0.914806188 0.811934389 -0.011218171 0.878944434
## [336] 0.829595798 0.759277557 0.790468185 0.748537926 0.834305476
## [341] 0.757562072 0.897749120 0.708394551 0.919800288 0.825368530
## [346] 0.758876497 0.801045356 0.868183412 0.915016308 0.767267405
## [351] 0.616984089 0.460645701 0.734528174 0.936572893 0.906150123
## [356] 0.780997849 0.824398368 0.820842443 0.802620792 0.933974774
## [361] 0.898053858 0.857406874 0.960583105 0.796132561 0.815837456
## [366] 0.976854002 0.709152122 0.723729649 0.803168511 0.698761116
## [371] 0.948553696 0.827789834 0.811604121 0.718828659 0.697731016
## [376] 0.921102610 0.972712028 0.629894225 0.688884650 0.956393640
## [381] 0.975659287 0.903476183 0.822525212 0.936185705 0.600265704
## [386] 0.829286999 0.792468237 0.898163055 0.763681087 0.952831839
## [391] 0.683035204 0.913568337 0.810531247 0.927122710 0.776996888
## [396] 0.941811198 0.879793418 0.825597244 0.846544911 0.875622740
## [401] 0.746280327 0.920738798 0.639584859 0.696005201 0.682231269
## [406] 0.788341748 0.669901129 0.796619596 0.680006250 0.935955727
## [411] 0.778368450 0.628357027 0.796033182 0.905443218 0.935670189
## [416] 0.628584670 0.915928523 0.629970742 0.777810841 0.963129352
## [421] 0.828071980 0.665956640 0.830535302 0.959565673 0.912099469
## [426] 0.841414772 0.892659245 0.920573687 0.843543396 0.916486473
## [431] 0.744189587 0.745593684 0.688038973 0.663189318 0.760994638
## [436] 0.742454582 0.904413616 0.791707237 0.811050321 0.670784001
## [441] 0.844793003 0.665417411 0.733606652 0.978959642 0.773789716
## [446] 0.708609472 0.762941012 0.950380694 0.739607794 0.889441020
## [451] 0.894570220 0.761564142 0.872196468 0.758572830 0.628300783
## [456] 0.761910882 0.741377261 0.931033705 0.817784298 0.900609925
## [461] 0.915130014 0.811394184 0.888995109 0.966101123 0.940778660
## [466] 0.913392051 0.845592563 0.685564290 0.752219499 0.905282055
## [471] 0.762745552 0.798212116 0.888639290 0.819912542 0.748183359
## [476] 0.782828855 0.681433897 0.856080810 0.967470003 0.893648858
## [481] 0.944587452 0.964843085 0.649507966 0.843247943 0.977331437
## [486] 0.911636584 0.907167631 0.729216365 0.934985053 0.924775073
## [491] 0.868878559 0.900846147 0.794475808 0.593190263 0.894761062
## [496] 0.693094463 0.748704835 0.971998045 0.691262314 0.796061418
## [501] 0.756106672 0.826358488 0.675604474 0.756512115 0.827623927
## [506] 0.707989768 0.887506692 0.849547545 0.964236513 0.755077005
## [511] 0.691708858 0.784393571 0.741448986 0.786606474 0.716033609
## [516] 0.691009470 0.939767496 0.843038329 0.887297177 0.744464433
## [521] 0.976441364 0.777321410 0.821889600 0.879962890 0.758735667
## [526] 0.841644430 0.826314628 0.775482809 0.630160561 0.690638380
## [531] 0.833249185 0.816451466 0.827661216 0.763678742 0.927955511
## [536] 0.801774572 0.693506576 0.934711134 0.752232211 0.812267404
## [541] 0.884926958 0.882683864 0.879261234 0.754425434 0.797464349
## [546] 0.805643305 0.825361521 0.856519429 0.822354986 0.978867406
## [551] 0.705478967 0.930332745 0.753875235 0.746303682 0.909405578
## [556] 0.899799998 0.886560073 0.753532409 0.825960102 0.914331766
## [561] 0.888367326 0.824771599 0.896852850 0.679657497 0.852472081
## [566] 0.831183439 0.893972795 0.876760565 0.916865065 0.829522473
## [571] 0.880472467 0.724471855 0.934379530 0.919393978 0.824382964
## [576] 0.850555152 0.755428647 0.760315090 0.895496264 0.774986009
## [581] 0.753676284 0.830398839 0.731544355 0.765184645 0.819107224
## [586] 0.758377272 0.802386632 0.797001149 0.907230314 0.832136565
## [591] 0.889381892 0.747150547 0.813607413 0.818802845 0.918925690
## [596] 0.001195636 0.717025032 0.820892220 0.778688782 0.958597148
## [601] 0.808683406 0.718790477 0.741616415 0.772430675 0.948189696
## [606] 0.981058551 0.930906257 0.808980384 0.888644139 0.829294341
## [611] 0.973707230 0.680637007 0.908134101 0.624638322 0.701720414
## [616] 0.712562990 0.963619255 0.905923414 0.757228875 0.839178768
## [621] 0.706828072 0.770465276 0.921088237 0.777833276 0.746987282
## [626] 0.737969681 0.944782372 0.782648939 0.842079055 0.902120619
## [631] 0.915182716 0.770893294 0.917223629 0.898447948 0.794900041
## [636] 0.719249223 0.878046339 0.867996289 0.725820160 0.746420370
## [641] 0.902433676 0.817067424 0.804896375 0.893633916 0.925585787
## [646] 0.658482132 0.939173764 0.894238244 0.822010923 0.742695734
## [651] 0.677269124 0.912310035 0.943744928 0.989501622 0.977457825
## [656] 0.815771131 0.973643551 0.811847327 0.743191377 0.768683767
## [661] 0.861374265 0.755389318 0.663117606 0.756040795 0.751231858
## [666] 0.944777538 0.878344413 0.826005417 0.792255531 0.978920579
## [671] 0.781395019 0.881949751 0.913622767 0.873595750 0.677977424
## [676] 0.884950214 0.787066940 0.917945068 0.808275712 0.923581426
## [681] 0.755951809 0.855476468 0.895384677 0.788982357 0.974200703
## [686] 0.732601507 0.981186877 0.755481974 0.892438986 0.831755775
## [691] 0.631502986 0.952646610 0.916608400 0.915218451 0.771764690
## [696] 0.965076845 0.808744699 0.883320755 0.932516155 0.730806028
## [701] 0.798057327 0.820243901 0.774962039 0.710163870 0.146341256
## [706] 0.944816945 0.677775788 0.903219676 0.915452231 0.678370002
## [711] 0.745496818 0.931951459 0.865432216 0.693011023 0.821079735
## [716] 0.837928819 0.634042157 0.691629865 0.974725668 0.799141760
## [721] 0.947698239 0.893118491 0.820571622 0.634299888 0.850858796
## [726] 0.920397461 0.921636475 0.732651519 0.745865421 0.867619896
## [731] 0.974276897 0.782409974 0.727577081 0.626040957 0.924409480
## [736] 0.904894403 0.943172023 0.787106394 0.808720307 0.932885534
## [741] 0.761524620 0.907563434 0.871993829 0.830566049 0.746424846
## [746] 0.699431313 0.658561325 0.951995402 0.908777215 0.696001993
## [751] 0.766048890 0.788319976 0.752374023 0.651024786 0.912160217
## [756] 0.937506253 0.782979159 0.919795103 0.876006326 0.759330515
## [761] 0.812331143 0.677695708 0.941341763 0.697291291 0.774945406
## [766] 0.817423711 0.792496600 0.771732431 0.698267211 0.897441088
## [771] 0.977553396 0.840664418 0.702719678 0.770627752 0.820716128
## [776] 0.960214299 0.831210888 0.872037503 0.731114495 0.690538916
## [781] 0.737808865 0.725761277 0.892453794 0.773425704 0.621001185
## [786] 0.915935918 0.952905774 0.879062943 0.770184793 0.698627663
## [791] 0.884113817 0.806131006 0.849419492 0.930101626 0.892289901
## [796] 0.924110763 0.836956565 0.932490731 0.804478775 0.725950005
## [801] 0.625887548 0.773603406 0.949018539 0.659349775 0.946672164
## [806] 0.952561927 0.793604170 0.835143922 0.773210200 0.820839307
## [811] 0.801352105 0.739692227 0.829921308 0.950757911 0.756856483
## [816] 0.939084256 0.740717546 0.810473730 0.829269718 0.833824315
## [821] 0.629893681 0.784030438 0.813568214 0.609170329 0.842388030
## [826] 0.907481375 0.818095360 0.953789296 0.623410448 0.655394406
## [831] 0.664110201 0.707521050 0.721370348 0.965322324 0.817999754
## [836] 0.667896415 0.733877164 0.930715769 0.944821273 0.911626023
## [841] 0.783683317 0.978381799 0.940737138 0.769114100 0.765060761
## [846] 0.914506121 0.626773573 0.934294659 0.914407761 0.924459767
## [851] 0.628020623 0.937079808 0.813709202 0.669315815 0.878858871
## [856] 0.787420906 0.916313067 0.819909433 0.719608193 0.702733951
## [861] 0.638374801 0.917941655 0.812259786 0.939533022 0.792227172
## [866] 0.930508388 0.814233394 0.897277817 0.933339692 0.967184575
## [871] 0.729804009 0.762031585 0.969391417 0.694988387 0.824750178
## [876] 0.833137664 0.978047106 0.819322943 0.903372409 0.912814991
## [881] 0.840690068 0.665270156 0.679259998 0.713442928 -0.048411620
## [886] 0.632615075 0.753316500 0.967381321 0.754247740 0.766767388
## [891] 0.900957607 0.893376392 0.785686975 0.943271862 0.789950059
## [896] 0.947029989 0.944872187 0.851607206 0.687539752 0.830435520
## [901] 0.831961522 0.886102763 0.753003388 0.975038677 0.713906504
## [906] 0.838997735 0.772872221 0.626684575 0.766587146 0.938467116
## [911] 0.805875404 0.815829812 0.975486599 0.654713226 0.784743917
## [916] 0.956253130 0.689170579 0.730570589 0.701384297 0.785760361
## [921] 0.756250153 0.964206516 0.980487304 0.878247225 0.916107177
## [926] 0.950044877 0.872473758 0.799284103 0.855208251 0.601687772
## [931] 0.892457059 0.937195534 0.794466915 0.712514311 0.882409111
## [936] 0.767108283 0.776401771 0.733726241 0.791553560 0.826020316
## [941] 0.890926925 0.790482608 0.827570531 0.893330133 0.745704237
## [946] 0.062712728 0.774501650 0.739521723 0.910724702 0.753130277
## [951] 0.658603987 0.822269671 0.953123133 0.795986616 0.584159957
## [956] 0.867166988 0.805724258 0.878017525 0.850878009 0.779521617
## [961] 0.719248769 0.721812549 0.807364162 0.906325336 0.688426164
## [966] 0.756727313 0.808120298 0.806576095 0.790605495 0.982882495
## [971] 0.927099691 0.833901778 0.896455407 0.909085786 0.765901121
## [976] 0.934353691 0.726976511 0.840346607 0.595033807 0.809538608
## [981] 0.767859280 0.785208872 0.969852049 0.960242147 0.784860284
## [986] 0.810376760 0.959416650 0.822423067 0.779982433 0.750933125
## [991] 0.918162826 0.823485437 0.677178146 0.942307213 0.973410209
## [996] 0.842286875 0.697967979 0.823612954 0.752918035 0.904962700
Compute the mean of the correlation coefficients of these 1000 bootstrap samples
mean(boot)
## [1] 0.816026
Use quantile() to compute an interval that encompasses 95% of the correlation coefficients of these 1000 bootstrap samples
quantile(boot,probs = c(.025,.975))
## 2.5% 97.5%
## 0.6260371 0.9754909
Explain what the interval above means in terms of the likely correlation between the percent of the population deprived of ELECTRICITY and the percent deprived of SANITATION across all countries
We are 95% confident that the true correlation between people deprived of Elecetricity and people deprived of Sanitation across all countries is between .626 and .975.
Explain if the interval above implies that the percent of the population deprived of ELECTRICITY in each country has a significant and positive effect on the percent deprived of SANITATION
The interval above applies that the population of people deprived of Electricity in a country has a strong positvive effect on the population of people deprived of Sanitation. In fact with the interval going as high as .975 it would mean that an increase or decrease in one of the values would have almost the exact same effect on the other.