df <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQx0EAzcq52X0nGCMkBjG7xWj8mvMIFaoVFIJynfeVuH4bYMW4Hua2zQmefpAb1mLT7S5ZP07ILmOx4/pub?gid=594888006&single=true&output=csv")
── Column specification ─────────────────────────────────────────────────────────────────────────────────────────
cols(
SoftTissueGroup = col_double(),
BIM = col_double(),
first_PIBM = col_double(),
first_PIDB = col_double(),
second_PIBM = col_double(),
second_PIBD = col_double(),
Diametrs = col_double(),
smoking = col_double()
)
Two values corrected
F45: -194???
F145: -196??
glimpse(df)
Rows: 150
Columns: 8
$ SoftTissueGroup <dbl> 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2,…
$ BIM <dbl> 2.61, 3.34, 2.07, 2.29, 2.93, 2.54, 2.93, 2.80, 1.42, 2.78, 3.11, 2.01, 1.71, 2.70, 2.…
$ first_PIBM <dbl> -1.48, 1.68, 2.05, 0.70, 3.25, -1.54, -0.33, -0.80, 0.89, -0.61, 2.38, 1.24, 0.68, -0.…
$ first_PIDB <dbl> -1.41, 0.00, 1.02, 0.58, -0.60, -1.35, -0.83, 0.00, -0.67, -1.09, 1.65, 0.95, -0.93, -…
$ second_PIBM <dbl> -0.60, -2.01, -2.29, 0.00, 1.61, -1.12, -2.05, -2.22, -0.80, -2.05, -0.59, -2.70, -1.4…
$ second_PIBD <dbl> -0.96, -2.04, -2.73, 0.00, -1.20, -1.81, -1.98, 0.00, -0.80, -2.11, -1.45, -2.26, -1.2…
$ Diametrs <dbl> 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1,…
$ smoking <dbl> 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2,…
Are NA values?
Changing smoking to factor
Changing soft tissue group to factor
Calculate the difference for PIBM and PIBD
Graph
Check the BIM
Seems normal or a little skewed to the left
Since no transformation seems necessary, now check if any correlation between BMI and the diff values
Also, there is no evidence for a reason to dichotomize the BIM variable