Descriptive Statistics for PM10

Descriptive Statistics for pm10
Ville Minimum X1st.Qu Median Mean X3rd.Qu Max NA.s
bordeaux 0.0000000 17.00000 22.33333 24.68781 29.49141 101.66667 128
clermont 2.0000000 12.50000 17.25000 19.75139 24.00000 105.75000 1
grenoble 3.3333333 17.17448 24.09375 27.45367 34.00000 110.50000 172
lehavre 5.0416667 16.66667 21.66667 24.81355 29.66667 123.66667 20
lille 0.0000000 16.50000 22.00000 25.53733 30.50000 131.00000 132
marseille 4.8229167 22.33333 30.33333 32.00210 39.33333 120.00000 66
nantes 4.5000000 15.00000 19.33333 21.77588 25.79027 112.00000 55
paris 8.0000000 23.00000 29.00000 31.88335 37.57474 153.50000 3
rennes 0.0000000 12.50000 17.00000 19.34861 23.00000 101.50000 67
rouen 0.3958333 17.50000 22.50000 25.40337 29.50000 116.50000 39
strasbourg 2.0000000 16.18750 22.66667 25.66733 31.66667 167.00000 106
toulouse 3.2000000 14.40000 19.60000 21.18753 26.00000 95.33333 30

Descriptive Statistics for pm10 by period (to be completed…)

Linear Interaction Model

Models For Lag0, Lag1 and La2 exposure

## change year variable with numeric ordinal number
for (i in 1:length(villes)){
  villes[[i]]$year<-as.numeric(villes[[i]]$annee)
} 

# define model objects
tot <- matrix(NA, nrow = 12, ncol = 7)
colnames(tot) <- c("Ville","Coefficient_B0","B0_CI95_Low","B0_CI95_High", "Coefficient_B1","LB_CI95_Low","B1_CI95_High")
modtot<-list()
st_errb0<-c()
st_errb1<-c()


# Linear Model for Lag0

for(i in 1:length(villes)) {
   modtot[[i]]<-gam(respi_tot~pm10+pm10:year+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
  est<-summary(modtot[[i]])
  tot[i, 1] <- as.character(villes_name[[i]])
  ll<-length(modtot[[i]]$coefficients)
  tot[i, 2] <- modtot[[i]]$coefficients[2]
  tot[i, 3] <- modtot[[i]]$coefficients[2]-(1.96*est$se[2])
  tot[i, 4] <- modtot[[i]]$coefficients[2]+(1.96*est$se[2])
  tot[i, 5] <- modtot[[i]]$coefficients[ll]
  tot[i, 6] <- modtot[[i]]$coefficients[ll]-(1.96*est$se[ll])
  tot[i, 7] <- modtot[[i]]$coefficients[ll]+(1.96*est$se[ll])
  st_errb0[i]<- est$se[2]
  st_errb1[i]<- est$se[ll]
}


# Linear Model for Lag1

# define model objects
tot_L1 <- matrix(NA, nrow = 12, ncol = 7)
colnames(tot_L1) <- c("Ville","Coefficient_B0","B0_CI95_Low","B0_CI95_High", "Coefficient_B1","LB_CI95_Low","B1_CI95_High")
modtot_L1<-list()
st_errb0_L1<-c()
st_errb1_L1<-c()


for(i in 1:length(villes)) {
   modtot_L1[[i]]<-gam(respi_tot~pm10_L1+pm10_L1:year+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
  est<-summary(modtot_L1[[i]])
  tot_L1[i, 1] <- as.character(villes_name[[i]])
  ll<-length(modtot_L1[[i]]$coefficients)
  tot_L1[i, 2] <- modtot_L1[[i]]$coefficients[2]
  tot_L1[i, 3] <- modtot_L1[[i]]$coefficients[2]-(1.96*est$se[2])
  tot_L1[i, 4] <- modtot_L1[[i]]$coefficients[2]+(1.96*est$se[2])
  tot_L1[i, 5] <- modtot_L1[[i]]$coefficients[ll]
  tot_L1[i, 6] <- modtot_L1[[i]]$coefficients[ll]-(1.96*est$se[ll])
  tot_L1[i, 7] <- modtot_L1[[i]]$coefficients[ll]+(1.96*est$se[ll])
  st_errb0_L1[i]<- est$se[2]
  st_errb1_L1[i]<- est$se[ll]
}



# Linear Model for Lag2

# define model objects
tot_L2 <- matrix(NA, nrow = 12, ncol = 7)
colnames(tot_L2) <- c("Ville","Coefficient_B0","B0_CI95_Low","B0_CI95_High", "Coefficient_B1","LB_CI95_Low","B1_CI95_High")
modtot_L2<-list()
st_errb0_L2<-c()
st_errb1_L2<-c()


for(i in 1:length(villes)) {
   modtot_L2[[i]]<-gam(respi_tot~pm10_L2+pm10_L2:year+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
  est<-summary(modtot_L2[[i]])
  tot_L2[i, 1] <- as.character(villes_name[[i]])
  ll<-length(modtot_L2[[i]]$coefficients)
  tot_L2[i, 2] <- modtot_L2[[i]]$coefficients[2]
  tot_L2[i, 3] <- modtot_L2[[i]]$coefficients[2]-(1.96*est$se[2])
  tot_L2[i, 4] <- modtot_L2[[i]]$coefficients[2]+(1.96*est$se[2])
  tot_L2[i, 5] <- modtot_L2[[i]]$coefficients[ll]
  tot_L2[i, 6] <- modtot_L2[[i]]$coefficients[ll]-(1.96*est$se[ll])
  tot_L2[i, 7] <- modtot_L2[[i]]$coefficients[ll]+(1.96*est$se[ll])
  st_errb0_L2[i]<- est$se[2]
  st_errb1_L2[i]<- est$se[ll]
}

Results For Lag0 exposure

Ville Coefficient_B0 B0_CI95_Low B0_CI95_High Coefficient_B1 LB_CI95_Low B1_CI95_High
bordeaux 0.9956 0.9917 0.9994 1.0004 1.0001 1.0007
clermont 0.9865 0.9799 0.9930 1.0013 1.0008 1.0019
grenoble 0.9861 0.9816 0.9906 1.0010 1.0006 1.0014
lehavre 0.9997 0.9944 1.0050 1.0000 0.9995 1.0004
lille 0.9968 0.9943 0.9992 1.0002 1.0000 1.0005
marseille 0.9954 0.9930 0.9979 1.0006 1.0004 1.0008
nantes 0.9871 0.9819 0.9923 1.0012 1.0008 1.0016
paris 1.0004 0.9992 1.0016 1.0001 1.0000 1.0001
rennes 0.9996 0.9924 1.0068 1.0001 0.9995 1.0007
rouen 1.0017 0.9976 1.0059 1.0003 1.0000 1.0006
strasbourg 0.9953 0.9909 0.9997 1.0009 1.0006 1.0012
toulouse 0.9941 0.9895 0.9987 1.0008 1.0004 1.0011
villes Increase_2002 Increase_2015 Temp_change
bordeaux 0.762 5.862 5.100
clermont 2.372 19.445 17.073
grenoble 1.768 14.171 12.403
lehavre -0.016 -0.122 -0.106
lille 0.480 3.658 3.178
marseille 1.137 8.863 7.726
nantes 2.133 17.322 15.189
paris 0.113 0.849 0.736
rennes 0.136 1.027 0.891
rouen 0.642 4.913 4.271
strasbourg 1.739 13.844 12.104
toulouse 1.461 11.528 10.067

Results For Lag1 exposure

Ville Coefficient_B0 B0_CI95_Low B0_CI95_High Coefficient_B1 LB_CI95_Low B1_CI95_High
bordeaux 0.9956 0.9917 0.9994 1.0004 1.0001 1.0007
clermont 0.9865 0.9799 0.9930 1.0013 1.0008 1.0019
grenoble 0.9861 0.9816 0.9906 1.0010 1.0006 1.0014
lehavre 0.9997 0.9944 1.0050 1.0000 0.9995 1.0004
lille 0.9968 0.9943 0.9992 1.0002 1.0000 1.0005
marseille 0.9954 0.9930 0.9979 1.0006 1.0004 1.0008
nantes 0.9871 0.9819 0.9923 1.0012 1.0008 1.0016
paris 1.0004 0.9992 1.0016 1.0001 1.0000 1.0001
rennes 0.9996 0.9924 1.0068 1.0001 0.9995 1.0007
rouen 1.0017 0.9976 1.0059 1.0003 1.0000 1.0006
strasbourg 0.9953 0.9909 0.9997 1.0009 1.0006 1.0012
toulouse 0.9941 0.9895 0.9987 1.0008 1.0004 1.0011
villes Increase_2002 Increase_2015 Temp_change
bordeaux 0.908 7.022 6.114
clermont 2.384 19.590 17.206
grenoble 1.733 13.853 12.121
lehavre 0.099 0.742 0.643
lille 0.456 3.473 3.017
marseille 1.098 8.556 7.457
nantes 2.014 16.246 14.232
paris 0.125 0.943 0.818
rennes -0.097 -0.728 -0.631
rouen 0.690 5.294 4.604
strasbourg 1.746 13.902 12.156
toulouse 1.350 10.599 9.249

Results For Lag2 exposure

Ville Coefficient_B0 B0_CI95_Low B0_CI95_High Coefficient_B1 LB_CI95_Low B1_CI95_High
bordeaux 0.9956 0.9917 0.9994 1.0004 1.0001 1.0007
clermont 0.9865 0.9799 0.9930 1.0013 1.0008 1.0019
grenoble 0.9861 0.9816 0.9906 1.0010 1.0006 1.0014
lehavre 0.9997 0.9944 1.0050 1.0000 0.9995 1.0004
lille 0.9968 0.9943 0.9992 1.0002 1.0000 1.0005
marseille 0.9954 0.9930 0.9979 1.0006 1.0004 1.0008
nantes 0.9871 0.9819 0.9923 1.0012 1.0008 1.0016
paris 1.0004 0.9992 1.0016 1.0001 1.0000 1.0001
rennes 0.9996 0.9924 1.0068 1.0001 0.9995 1.0007
rouen 1.0017 0.9976 1.0059 1.0003 1.0000 1.0006
strasbourg 0.9953 0.9909 0.9997 1.0009 1.0006 1.0012
toulouse 0.9941 0.9895 0.9987 1.0008 1.0004 1.0011
villes Increase_2002 Increase_2015 Temp_change
bordeaux 0.935 7.238 6.303
clermont 2.110 17.111 15.001
grenoble 1.602 12.739 11.137
lehavre 0.182 1.370 1.189
lille 0.317 2.405 2.088
marseille 1.044 8.117 7.073
nantes 2.037 16.472 14.435
paris 0.128 0.963 0.835
rennes 0.460 3.503 3.043
rouen 0.711 5.467 4.756
strasbourg 1.852 14.815 12.963
toulouse 1.334 10.487 9.153

Metanalysis of the results

For Lag0 exposure

##         Increase_2002 Increase_2015 Temp_change
## intrcpt      1.076127      8.373883    7.297756

Results For Lag1 exposure

##         Increase_2002 Increase_2015 Temp_change
## intrcpt      1.058639      8.231845    7.173206

Results For Lag2 exposure

##         Increase_2002 Increase_2015 Temp_change
## intrcpt      1.055356      8.207516     7.15216

Non-Linear Interaction Model

Models For Lag0, Lag1 and La2 exposure

# Non-Linear Model for Lag0

for(i in 1:length(villes)) {
  year[[i]] <- onebasis(villes[[i]]$year,"ns",knots=c(4,7,11))
  yr<-year[[i]]
  nl_modtot[[i]]<-gam(respi_tot~pm10+pm10:yr+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
  est<-summary(nl_modtot[[i]])
  nl_coeffB0[i,1] <- as.character(villes_name[[i]])
  nl_coeffB1[i,1] <- as.character(villes_name[[i]])
  ll<-length(nl_modtot[[i]]$coefficients)
  nl_coeffB0[i, 2] <- nl_modtot[[i]]$coefficients[2]
  nl_coeffB0[i, 3] <- nl_modtot[[i]]$coefficients[2]-(1.96*est$se[2])
  nl_coeffB0[i, 4] <- nl_modtot[[i]]$coefficients[2]+(1.96*est$se[2])
  nl_coeffB1[i, 2] <- nl_modtot[[i]]$coefficients[ll-3]
  nl_coeffB1[i, 3] <- nl_modtot[[i]]$coefficients[ll-3]-(1.96*est$se[ll-3])
  nl_coeffB1[i, 4] <- nl_modtot[[i]]$coefficients[ll-3]+(1.96*est$se[ll-3])
  nl_coeffB1[i, 5] <- nl_modtot[[i]]$coefficients[ll-2]
  nl_coeffB1[i, 6] <- nl_modtot[[i]]$coefficients[ll-2]-(1.96*est$se[ll-2])
  nl_coeffB1[i, 7] <- nl_modtot[[i]]$coefficients[ll-2]+(1.96*est$se[ll-2])
  nl_coeffB1[i, 8] <- nl_modtot[[i]]$coefficients[ll-1]
  nl_coeffB1[i, 9] <- nl_modtot[[i]]$coefficients[ll-1]-(1.96*est$se[ll-1])
  nl_coeffB1[i, 10] <- nl_modtot[[i]]$coefficients[ll]+(1.96*est$se[ll-1])
  nl_coeffB1[i, 11] <- nl_modtot[[i]]$coefficients[ll]
  nl_coeffB1[i, 12] <- nl_modtot[[i]]$coefficients[ll]-(1.96*est$se[ll])
  nl_coeffB1[i, 13] <- nl_modtot[[i]]$coefficients[ll]+(1.96*est$se[ll])
  # nl_st_errb0[i]<- est$se[2]
  # nl_st_errb11[i]<- est$se[ll-3]
  # nl_st_errb12[i]<- est$se[ll-2]
  # nl_st_errb13[i]<- est$se[ll-1]
  # nl_st_errb14[i]<- est$se[ll]
  pred_nnlin[[i]]<-crosspred(yr,nl_modtot[[i]],cen=0)
  y_nl[i,] <- pred_nnlin[[i]]$coef
  S_nl[[i]] <- pred_nnlin[[i]]$vcov
}

# Non-Linear Model for Lag1

for(i in 1:length(villes)) {
  year[[i]] <- onebasis(villes[[i]]$year,"ns",knots=c(4,7,11))
  yr<-year[[i]]
  nl_modtot_L1[[i]]<-gam(respi_tot~pm10_L1+pm10_L1:yr+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
  est<-summary(nl_modtot_L1[[i]])
  nl_coeffB0_L1[i,1] <- as.character(villes_name[[i]])
  nl_coeffB1_L1[i,1] <- as.character(villes_name[[i]])
  ll<-length(nl_modtot_L1[[i]]$coefficients)
  nl_coeffB0_L1[i, 2] <- nl_modtot_L1[[i]]$coefficients[2]
  nl_coeffB0_L1[i, 3] <- nl_modtot_L1[[i]]$coefficients[2]-(1.96*est$se[2])
  nl_coeffB0_L1[i, 4] <- nl_modtot_L1[[i]]$coefficients[2]+(1.96*est$se[2])
  nl_coeffB1_L1[i, 2] <- nl_modtot_L1[[i]]$coefficients[ll-3]
  nl_coeffB1_L1[i, 3] <- nl_modtot_L1[[i]]$coefficients[ll-3]-(1.96*est$se[ll-3])
  nl_coeffB1_L1[i, 4] <- nl_modtot_L1[[i]]$coefficients[ll-3]+(1.96*est$se[ll-3])
  nl_coeffB1_L1[i, 5] <- nl_modtot_L1[[i]]$coefficients[ll-2]
  nl_coeffB1_L1[i, 6] <- nl_modtot_L1[[i]]$coefficients[ll-2]-(1.96*est$se[ll-2])
  nl_coeffB1_L1[i, 7] <- nl_modtot_L1[[i]]$coefficients[ll-2]+(1.96*est$se[ll-2])
  nl_coeffB1_L1[i, 8] <- nl_modtot_L1[[i]]$coefficients[ll-1]
  nl_coeffB1_L1[i, 9] <- nl_modtot_L1[[i]]$coefficients[ll-1]-(1.96*est$se[ll-1])
  nl_coeffB1_L1[i, 10] <- nl_modtot_L1[[i]]$coefficients[ll]+(1.96*est$se[ll-1])
  nl_coeffB1_L1[i, 11] <- nl_modtot_L1[[i]]$coefficients[ll]
  nl_coeffB1_L1[i, 12] <- nl_modtot_L1[[i]]$coefficients[ll]-(1.96*est$se[ll])
  nl_coeffB1_L1[i, 13] <- nl_modtot_L1[[i]]$coefficients[ll]+(1.96*est$se[ll])
  pred_nnlin_L1[[i]]<-crosspred(yr,nl_modtot_L1[[i]],cen=0)
  y_nl_L1[i,] <- pred_nnlin_L1[[i]]$coef
  S_nl_L1[[i]] <- pred_nnlin_L1[[i]]$vcov
}

# Non-Linear Model for Lag2

for(i in 1:length(villes)) {
  year[[i]] <- onebasis(villes[[i]]$year,"ns",knots=c(4,7,11))
  yr<-year[[i]]
  nl_modtot_L2[[i]]<-gam(respi_tot~pm10_L2+pm10_L2:yr+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
  est<-summary(nl_modtot_L2[[i]])
  nl_coeffB0_L2[i,1] <- as.character(villes_name[[i]])
  nl_coeffB1_L2[i,1] <- as.character(villes_name[[i]])
  ll<-length(nl_modtot_L2[[i]]$coefficients)
  nl_coeffB0_L2[i, 2] <- nl_modtot_L2[[i]]$coefficients[2]
  nl_coeffB0_L2[i, 3] <- nl_modtot_L2[[i]]$coefficients[2]-(1.96*est$se[2])
  nl_coeffB0_L2[i, 4] <- nl_modtot_L2[[i]]$coefficients[2]+(1.96*est$se[2])
  nl_coeffB1_L2[i, 2] <- nl_modtot_L2[[i]]$coefficients[ll-3]
  nl_coeffB1_L2[i, 3] <- nl_modtot_L2[[i]]$coefficients[ll-3]-(1.96*est$se[ll-3])
  nl_coeffB1_L2[i, 4] <- nl_modtot_L2[[i]]$coefficients[ll-3]+(1.96*est$se[ll-3])
  nl_coeffB1_L2[i, 5] <- nl_modtot_L2[[i]]$coefficients[ll-2]
  nl_coeffB1_L2[i, 6] <- nl_modtot_L2[[i]]$coefficients[ll-2]-(1.96*est$se[ll-2])
  nl_coeffB1_L2[i, 7] <- nl_modtot_L2[[i]]$coefficients[ll-2]+(1.96*est$se[ll-2])
  nl_coeffB1_L2[i, 8] <- nl_modtot_L2[[i]]$coefficients[ll-1]
  nl_coeffB1_L2[i, 9] <- nl_modtot_L2[[i]]$coefficients[ll-1]-(1.96*est$se[ll-1])
  nl_coeffB1_L2[i, 10] <- nl_modtot_L2[[i]]$coefficients[ll]+(1.96*est$se[ll-1])
  nl_coeffB1_L2[i, 11] <- nl_modtot_L2[[i]]$coefficients[ll]
  nl_coeffB1_L2[i, 12] <- nl_modtot_L2[[i]]$coefficients[ll]-(1.96*est$se[ll])
  nl_coeffB1_L2[i, 13] <- nl_modtot_L2[[i]]$coefficients[ll]+(1.96*est$se[ll])
  pred_nnlin_L2[[i]]<-crosspred(yr,nl_modtot_L2[[i]],cen=0)
  y_nl_L2[i,] <- pred_nnlin_L2[[i]]$coef
  S_nl_L2[[i]] <- pred_nnlin_L2[[i]]$vcov
}

Meta-analysis results

## Call:  mvmeta(formula = y_nl ~ 1, S = S_nl, method = "ml")
## 
## Multivariate random-effects meta-analysis
## Dimension: 4
## Estimation method: ML
## 
## Fixed-effects coefficients
##     Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub     
## y1   -0.0015      0.0009  -1.5432    0.1228   -0.0033    0.0004     
## y2    0.0013      0.0012   1.1044    0.2694   -0.0010    0.0036     
## y3    0.0041      0.0020   2.0910    0.0365    0.0003    0.0080    *
## y4    0.0108      0.0015   7.1996    0.0000    0.0078    0.0137  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
## Structure: General positive-definite
##     Std. Dev     Corr                  
## y1    0.0020       y1       y2       y3
## y2    0.0033   0.5270                  
## y3    0.0048  -0.2724   0.4722         
## y4    0.0042   0.3827   0.9584   0.6968
## 
## Multivariate Cochran Q-test for heterogeneity:
## Q = 178.5237 (df = 44), p-value = 0.0000
## I-square statistic = 75.4%
## 
## 12 studies, 48 observations, 4 fixed and 10 random-effects parameters
##    logLik        AIC        BIC  
##  188.0033  -348.0066  -321.8098

## Call:  mvmeta(formula = y_nl_L1 ~ 1, S = S_nl_L1, method = "ml")
## 
## Multivariate random-effects meta-analysis
## Dimension: 4
## Estimation method: ML
## 
## Fixed-effects coefficients
##     Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub     
## y1   -0.0019      0.0010  -2.0283    0.0425   -0.0038   -0.0001    *
## y2    0.0015      0.0012   1.2510    0.2109   -0.0009    0.0039     
## y3    0.0045      0.0021   2.1630    0.0305    0.0004    0.0085    *
## y4    0.0103      0.0014   7.5841    0.0000    0.0076    0.0129  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
## Structure: General positive-definite
##     Std. Dev     Corr                  
## y1    0.0019       y1       y2       y3
## y2    0.0033  0.38668                  
## y3    0.0047  0.12498  0.32632         
## y4    0.0037  0.07009  0.93333  0.46723
## 
## Multivariate Cochran Q-test for heterogeneity:
## Q = 173.6179 (df = 44), p-value = 0.0000
## I-square statistic = 74.7%
## 
## 12 studies, 48 observations, 4 fixed and 10 random-effects parameters
##    logLik        AIC        BIC  
##  186.8885  -345.7771  -319.5803

## Call:  mvmeta(formula = y_nl_L2 ~ 1, S = S_nl_L2, method = "ml")
## 
## Multivariate random-effects meta-analysis
## Dimension: 4
## Estimation method: ML
## 
## Fixed-effects coefficients
##     Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub     
## y1   -0.0016      0.0009  -1.7502    0.0801   -0.0033    0.0002    .
## y2    0.0010      0.0012   0.8423    0.3996   -0.0013    0.0033     
## y3    0.0045      0.0020   2.2905    0.0220    0.0007    0.0084    *
## y4    0.0108      0.0016   6.6257    0.0000    0.0076    0.0140  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
## Structure: General positive-definite
##     Std. Dev      Corr                    
## y1    0.0016        y1        y2        y3
## y2    0.0029   0.33565                    
## y3    0.0044  -0.04287   0.23726          
## y4    0.0044   0.16962   0.48192   0.55411
## 
## Multivariate Cochran Q-test for heterogeneity:
## Q = 169.1722 (df = 44), p-value = 0.0000
## I-square statistic = 74.0%
## 
## 12 studies, 48 observations, 4 fixed and 10 random-effects parameters
##    logLik        AIC        BIC  
##  188.1874  -348.3748  -322.1780