| Ville | Minimum | X1st.Qu | Median | Mean | X3rd.Qu | Max | NA.s |
|---|---|---|---|---|---|---|---|
| bordeaux | 0.0000000 | 17.00000 | 22.33333 | 24.68781 | 29.49141 | 101.66667 | 128 |
| clermont | 2.0000000 | 12.50000 | 17.25000 | 19.75139 | 24.00000 | 105.75000 | 1 |
| grenoble | 3.3333333 | 17.17448 | 24.09375 | 27.45367 | 34.00000 | 110.50000 | 172 |
| lehavre | 5.0416667 | 16.66667 | 21.66667 | 24.81355 | 29.66667 | 123.66667 | 20 |
| lille | 0.0000000 | 16.50000 | 22.00000 | 25.53733 | 30.50000 | 131.00000 | 132 |
| marseille | 4.8229167 | 22.33333 | 30.33333 | 32.00210 | 39.33333 | 120.00000 | 66 |
| nantes | 4.5000000 | 15.00000 | 19.33333 | 21.77588 | 25.79027 | 112.00000 | 55 |
| paris | 8.0000000 | 23.00000 | 29.00000 | 31.88335 | 37.57474 | 153.50000 | 3 |
| rennes | 0.0000000 | 12.50000 | 17.00000 | 19.34861 | 23.00000 | 101.50000 | 67 |
| rouen | 0.3958333 | 17.50000 | 22.50000 | 25.40337 | 29.50000 | 116.50000 | 39 |
| strasbourg | 2.0000000 | 16.18750 | 22.66667 | 25.66733 | 31.66667 | 167.00000 | 106 |
| toulouse | 3.2000000 | 14.40000 | 19.60000 | 21.18753 | 26.00000 | 95.33333 | 30 |
## change year variable with numeric ordinal number
for (i in 1:length(villes)){
villes[[i]]$year<-as.numeric(villes[[i]]$annee)
}
# define model objects
tot <- matrix(NA, nrow = 12, ncol = 7)
colnames(tot) <- c("Ville","Coefficient_B0","B0_CI95_Low","B0_CI95_High", "Coefficient_B1","LB_CI95_Low","B1_CI95_High")
modtot<-list()
st_errb0<-c()
st_errb1<-c()
# Linear Model for Lag0
for(i in 1:length(villes)) {
modtot[[i]]<-gam(respi_tot~pm10+pm10:year+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(modtot[[i]])
tot[i, 1] <- as.character(villes_name[[i]])
ll<-length(modtot[[i]]$coefficients)
tot[i, 2] <- modtot[[i]]$coefficients[2]
tot[i, 3] <- modtot[[i]]$coefficients[2]-(1.96*est$se[2])
tot[i, 4] <- modtot[[i]]$coefficients[2]+(1.96*est$se[2])
tot[i, 5] <- modtot[[i]]$coefficients[ll]
tot[i, 6] <- modtot[[i]]$coefficients[ll]-(1.96*est$se[ll])
tot[i, 7] <- modtot[[i]]$coefficients[ll]+(1.96*est$se[ll])
st_errb0[i]<- est$se[2]
st_errb1[i]<- est$se[ll]
}
# Linear Model for Lag1
# define model objects
tot_L1 <- matrix(NA, nrow = 12, ncol = 7)
colnames(tot_L1) <- c("Ville","Coefficient_B0","B0_CI95_Low","B0_CI95_High", "Coefficient_B1","LB_CI95_Low","B1_CI95_High")
modtot_L1<-list()
st_errb0_L1<-c()
st_errb1_L1<-c()
for(i in 1:length(villes)) {
modtot_L1[[i]]<-gam(respi_tot~pm10_L1+pm10_L1:year+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(modtot_L1[[i]])
tot_L1[i, 1] <- as.character(villes_name[[i]])
ll<-length(modtot_L1[[i]]$coefficients)
tot_L1[i, 2] <- modtot_L1[[i]]$coefficients[2]
tot_L1[i, 3] <- modtot_L1[[i]]$coefficients[2]-(1.96*est$se[2])
tot_L1[i, 4] <- modtot_L1[[i]]$coefficients[2]+(1.96*est$se[2])
tot_L1[i, 5] <- modtot_L1[[i]]$coefficients[ll]
tot_L1[i, 6] <- modtot_L1[[i]]$coefficients[ll]-(1.96*est$se[ll])
tot_L1[i, 7] <- modtot_L1[[i]]$coefficients[ll]+(1.96*est$se[ll])
st_errb0_L1[i]<- est$se[2]
st_errb1_L1[i]<- est$se[ll]
}
# Linear Model for Lag2
# define model objects
tot_L2 <- matrix(NA, nrow = 12, ncol = 7)
colnames(tot_L2) <- c("Ville","Coefficient_B0","B0_CI95_Low","B0_CI95_High", "Coefficient_B1","LB_CI95_Low","B1_CI95_High")
modtot_L2<-list()
st_errb0_L2<-c()
st_errb1_L2<-c()
for(i in 1:length(villes)) {
modtot_L2[[i]]<-gam(respi_tot~pm10_L2+pm10_L2:year+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(modtot_L2[[i]])
tot_L2[i, 1] <- as.character(villes_name[[i]])
ll<-length(modtot_L2[[i]]$coefficients)
tot_L2[i, 2] <- modtot_L2[[i]]$coefficients[2]
tot_L2[i, 3] <- modtot_L2[[i]]$coefficients[2]-(1.96*est$se[2])
tot_L2[i, 4] <- modtot_L2[[i]]$coefficients[2]+(1.96*est$se[2])
tot_L2[i, 5] <- modtot_L2[[i]]$coefficients[ll]
tot_L2[i, 6] <- modtot_L2[[i]]$coefficients[ll]-(1.96*est$se[ll])
tot_L2[i, 7] <- modtot_L2[[i]]$coefficients[ll]+(1.96*est$se[ll])
st_errb0_L2[i]<- est$se[2]
st_errb1_L2[i]<- est$se[ll]
}
| Ville | Coefficient_B0 | B0_CI95_Low | B0_CI95_High | Coefficient_B1 | LB_CI95_Low | B1_CI95_High |
|---|---|---|---|---|---|---|
| bordeaux | 0.9956 | 0.9917 | 0.9994 | 1.0004 | 1.0001 | 1.0007 |
| clermont | 0.9865 | 0.9799 | 0.9930 | 1.0013 | 1.0008 | 1.0019 |
| grenoble | 0.9861 | 0.9816 | 0.9906 | 1.0010 | 1.0006 | 1.0014 |
| lehavre | 0.9997 | 0.9944 | 1.0050 | 1.0000 | 0.9995 | 1.0004 |
| lille | 0.9968 | 0.9943 | 0.9992 | 1.0002 | 1.0000 | 1.0005 |
| marseille | 0.9954 | 0.9930 | 0.9979 | 1.0006 | 1.0004 | 1.0008 |
| nantes | 0.9871 | 0.9819 | 0.9923 | 1.0012 | 1.0008 | 1.0016 |
| paris | 1.0004 | 0.9992 | 1.0016 | 1.0001 | 1.0000 | 1.0001 |
| rennes | 0.9996 | 0.9924 | 1.0068 | 1.0001 | 0.9995 | 1.0007 |
| rouen | 1.0017 | 0.9976 | 1.0059 | 1.0003 | 1.0000 | 1.0006 |
| strasbourg | 0.9953 | 0.9909 | 0.9997 | 1.0009 | 1.0006 | 1.0012 |
| toulouse | 0.9941 | 0.9895 | 0.9987 | 1.0008 | 1.0004 | 1.0011 |
| villes | Increase_2002 | Increase_2015 | Temp_change |
|---|---|---|---|
| bordeaux | 0.762 | 5.862 | 5.100 |
| clermont | 2.372 | 19.445 | 17.073 |
| grenoble | 1.768 | 14.171 | 12.403 |
| lehavre | -0.016 | -0.122 | -0.106 |
| lille | 0.480 | 3.658 | 3.178 |
| marseille | 1.137 | 8.863 | 7.726 |
| nantes | 2.133 | 17.322 | 15.189 |
| paris | 0.113 | 0.849 | 0.736 |
| rennes | 0.136 | 1.027 | 0.891 |
| rouen | 0.642 | 4.913 | 4.271 |
| strasbourg | 1.739 | 13.844 | 12.104 |
| toulouse | 1.461 | 11.528 | 10.067 |
| Ville | Coefficient_B0 | B0_CI95_Low | B0_CI95_High | Coefficient_B1 | LB_CI95_Low | B1_CI95_High |
|---|---|---|---|---|---|---|
| bordeaux | 0.9956 | 0.9917 | 0.9994 | 1.0004 | 1.0001 | 1.0007 |
| clermont | 0.9865 | 0.9799 | 0.9930 | 1.0013 | 1.0008 | 1.0019 |
| grenoble | 0.9861 | 0.9816 | 0.9906 | 1.0010 | 1.0006 | 1.0014 |
| lehavre | 0.9997 | 0.9944 | 1.0050 | 1.0000 | 0.9995 | 1.0004 |
| lille | 0.9968 | 0.9943 | 0.9992 | 1.0002 | 1.0000 | 1.0005 |
| marseille | 0.9954 | 0.9930 | 0.9979 | 1.0006 | 1.0004 | 1.0008 |
| nantes | 0.9871 | 0.9819 | 0.9923 | 1.0012 | 1.0008 | 1.0016 |
| paris | 1.0004 | 0.9992 | 1.0016 | 1.0001 | 1.0000 | 1.0001 |
| rennes | 0.9996 | 0.9924 | 1.0068 | 1.0001 | 0.9995 | 1.0007 |
| rouen | 1.0017 | 0.9976 | 1.0059 | 1.0003 | 1.0000 | 1.0006 |
| strasbourg | 0.9953 | 0.9909 | 0.9997 | 1.0009 | 1.0006 | 1.0012 |
| toulouse | 0.9941 | 0.9895 | 0.9987 | 1.0008 | 1.0004 | 1.0011 |
| villes | Increase_2002 | Increase_2015 | Temp_change |
|---|---|---|---|
| bordeaux | 0.908 | 7.022 | 6.114 |
| clermont | 2.384 | 19.590 | 17.206 |
| grenoble | 1.733 | 13.853 | 12.121 |
| lehavre | 0.099 | 0.742 | 0.643 |
| lille | 0.456 | 3.473 | 3.017 |
| marseille | 1.098 | 8.556 | 7.457 |
| nantes | 2.014 | 16.246 | 14.232 |
| paris | 0.125 | 0.943 | 0.818 |
| rennes | -0.097 | -0.728 | -0.631 |
| rouen | 0.690 | 5.294 | 4.604 |
| strasbourg | 1.746 | 13.902 | 12.156 |
| toulouse | 1.350 | 10.599 | 9.249 |
| Ville | Coefficient_B0 | B0_CI95_Low | B0_CI95_High | Coefficient_B1 | LB_CI95_Low | B1_CI95_High |
|---|---|---|---|---|---|---|
| bordeaux | 0.9956 | 0.9917 | 0.9994 | 1.0004 | 1.0001 | 1.0007 |
| clermont | 0.9865 | 0.9799 | 0.9930 | 1.0013 | 1.0008 | 1.0019 |
| grenoble | 0.9861 | 0.9816 | 0.9906 | 1.0010 | 1.0006 | 1.0014 |
| lehavre | 0.9997 | 0.9944 | 1.0050 | 1.0000 | 0.9995 | 1.0004 |
| lille | 0.9968 | 0.9943 | 0.9992 | 1.0002 | 1.0000 | 1.0005 |
| marseille | 0.9954 | 0.9930 | 0.9979 | 1.0006 | 1.0004 | 1.0008 |
| nantes | 0.9871 | 0.9819 | 0.9923 | 1.0012 | 1.0008 | 1.0016 |
| paris | 1.0004 | 0.9992 | 1.0016 | 1.0001 | 1.0000 | 1.0001 |
| rennes | 0.9996 | 0.9924 | 1.0068 | 1.0001 | 0.9995 | 1.0007 |
| rouen | 1.0017 | 0.9976 | 1.0059 | 1.0003 | 1.0000 | 1.0006 |
| strasbourg | 0.9953 | 0.9909 | 0.9997 | 1.0009 | 1.0006 | 1.0012 |
| toulouse | 0.9941 | 0.9895 | 0.9987 | 1.0008 | 1.0004 | 1.0011 |
| villes | Increase_2002 | Increase_2015 | Temp_change |
|---|---|---|---|
| bordeaux | 0.935 | 7.238 | 6.303 |
| clermont | 2.110 | 17.111 | 15.001 |
| grenoble | 1.602 | 12.739 | 11.137 |
| lehavre | 0.182 | 1.370 | 1.189 |
| lille | 0.317 | 2.405 | 2.088 |
| marseille | 1.044 | 8.117 | 7.073 |
| nantes | 2.037 | 16.472 | 14.435 |
| paris | 0.128 | 0.963 | 0.835 |
| rennes | 0.460 | 3.503 | 3.043 |
| rouen | 0.711 | 5.467 | 4.756 |
| strasbourg | 1.852 | 14.815 | 12.963 |
| toulouse | 1.334 | 10.487 | 9.153 |
## Increase_2002 Increase_2015 Temp_change
## intrcpt 1.076127 8.373883 7.297756
## Increase_2002 Increase_2015 Temp_change
## intrcpt 1.058639 8.231845 7.173206
## Increase_2002 Increase_2015 Temp_change
## intrcpt 1.055356 8.207516 7.15216
# Non-Linear Model for Lag0
for(i in 1:length(villes)) {
year[[i]] <- onebasis(villes[[i]]$year,"ns",knots=c(4,7,11))
yr<-year[[i]]
nl_modtot[[i]]<-gam(respi_tot~pm10+pm10:yr+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(nl_modtot[[i]])
nl_coeffB0[i,1] <- as.character(villes_name[[i]])
nl_coeffB1[i,1] <- as.character(villes_name[[i]])
ll<-length(nl_modtot[[i]]$coefficients)
nl_coeffB0[i, 2] <- nl_modtot[[i]]$coefficients[2]
nl_coeffB0[i, 3] <- nl_modtot[[i]]$coefficients[2]-(1.96*est$se[2])
nl_coeffB0[i, 4] <- nl_modtot[[i]]$coefficients[2]+(1.96*est$se[2])
nl_coeffB1[i, 2] <- nl_modtot[[i]]$coefficients[ll-3]
nl_coeffB1[i, 3] <- nl_modtot[[i]]$coefficients[ll-3]-(1.96*est$se[ll-3])
nl_coeffB1[i, 4] <- nl_modtot[[i]]$coefficients[ll-3]+(1.96*est$se[ll-3])
nl_coeffB1[i, 5] <- nl_modtot[[i]]$coefficients[ll-2]
nl_coeffB1[i, 6] <- nl_modtot[[i]]$coefficients[ll-2]-(1.96*est$se[ll-2])
nl_coeffB1[i, 7] <- nl_modtot[[i]]$coefficients[ll-2]+(1.96*est$se[ll-2])
nl_coeffB1[i, 8] <- nl_modtot[[i]]$coefficients[ll-1]
nl_coeffB1[i, 9] <- nl_modtot[[i]]$coefficients[ll-1]-(1.96*est$se[ll-1])
nl_coeffB1[i, 10] <- nl_modtot[[i]]$coefficients[ll]+(1.96*est$se[ll-1])
nl_coeffB1[i, 11] <- nl_modtot[[i]]$coefficients[ll]
nl_coeffB1[i, 12] <- nl_modtot[[i]]$coefficients[ll]-(1.96*est$se[ll])
nl_coeffB1[i, 13] <- nl_modtot[[i]]$coefficients[ll]+(1.96*est$se[ll])
# nl_st_errb0[i]<- est$se[2]
# nl_st_errb11[i]<- est$se[ll-3]
# nl_st_errb12[i]<- est$se[ll-2]
# nl_st_errb13[i]<- est$se[ll-1]
# nl_st_errb14[i]<- est$se[ll]
pred_nnlin[[i]]<-crosspred(yr,nl_modtot[[i]],cen=0)
y_nl[i,] <- pred_nnlin[[i]]$coef
S_nl[[i]] <- pred_nnlin[[i]]$vcov
}
# Non-Linear Model for Lag1
for(i in 1:length(villes)) {
year[[i]] <- onebasis(villes[[i]]$year,"ns",knots=c(4,7,11))
yr<-year[[i]]
nl_modtot_L1[[i]]<-gam(respi_tot~pm10_L1+pm10_L1:yr+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(nl_modtot_L1[[i]])
nl_coeffB0_L1[i,1] <- as.character(villes_name[[i]])
nl_coeffB1_L1[i,1] <- as.character(villes_name[[i]])
ll<-length(nl_modtot_L1[[i]]$coefficients)
nl_coeffB0_L1[i, 2] <- nl_modtot_L1[[i]]$coefficients[2]
nl_coeffB0_L1[i, 3] <- nl_modtot_L1[[i]]$coefficients[2]-(1.96*est$se[2])
nl_coeffB0_L1[i, 4] <- nl_modtot_L1[[i]]$coefficients[2]+(1.96*est$se[2])
nl_coeffB1_L1[i, 2] <- nl_modtot_L1[[i]]$coefficients[ll-3]
nl_coeffB1_L1[i, 3] <- nl_modtot_L1[[i]]$coefficients[ll-3]-(1.96*est$se[ll-3])
nl_coeffB1_L1[i, 4] <- nl_modtot_L1[[i]]$coefficients[ll-3]+(1.96*est$se[ll-3])
nl_coeffB1_L1[i, 5] <- nl_modtot_L1[[i]]$coefficients[ll-2]
nl_coeffB1_L1[i, 6] <- nl_modtot_L1[[i]]$coefficients[ll-2]-(1.96*est$se[ll-2])
nl_coeffB1_L1[i, 7] <- nl_modtot_L1[[i]]$coefficients[ll-2]+(1.96*est$se[ll-2])
nl_coeffB1_L1[i, 8] <- nl_modtot_L1[[i]]$coefficients[ll-1]
nl_coeffB1_L1[i, 9] <- nl_modtot_L1[[i]]$coefficients[ll-1]-(1.96*est$se[ll-1])
nl_coeffB1_L1[i, 10] <- nl_modtot_L1[[i]]$coefficients[ll]+(1.96*est$se[ll-1])
nl_coeffB1_L1[i, 11] <- nl_modtot_L1[[i]]$coefficients[ll]
nl_coeffB1_L1[i, 12] <- nl_modtot_L1[[i]]$coefficients[ll]-(1.96*est$se[ll])
nl_coeffB1_L1[i, 13] <- nl_modtot_L1[[i]]$coefficients[ll]+(1.96*est$se[ll])
pred_nnlin_L1[[i]]<-crosspred(yr,nl_modtot_L1[[i]],cen=0)
y_nl_L1[i,] <- pred_nnlin_L1[[i]]$coef
S_nl_L1[[i]] <- pred_nnlin_L1[[i]]$vcov
}
# Non-Linear Model for Lag2
for(i in 1:length(villes)) {
year[[i]] <- onebasis(villes[[i]]$year,"ns",knots=c(4,7,11))
yr<-year[[i]]
nl_modtot_L2[[i]]<-gam(respi_tot~pm10_L2+pm10_L2:yr+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(nl_modtot_L2[[i]])
nl_coeffB0_L2[i,1] <- as.character(villes_name[[i]])
nl_coeffB1_L2[i,1] <- as.character(villes_name[[i]])
ll<-length(nl_modtot_L2[[i]]$coefficients)
nl_coeffB0_L2[i, 2] <- nl_modtot_L2[[i]]$coefficients[2]
nl_coeffB0_L2[i, 3] <- nl_modtot_L2[[i]]$coefficients[2]-(1.96*est$se[2])
nl_coeffB0_L2[i, 4] <- nl_modtot_L2[[i]]$coefficients[2]+(1.96*est$se[2])
nl_coeffB1_L2[i, 2] <- nl_modtot_L2[[i]]$coefficients[ll-3]
nl_coeffB1_L2[i, 3] <- nl_modtot_L2[[i]]$coefficients[ll-3]-(1.96*est$se[ll-3])
nl_coeffB1_L2[i, 4] <- nl_modtot_L2[[i]]$coefficients[ll-3]+(1.96*est$se[ll-3])
nl_coeffB1_L2[i, 5] <- nl_modtot_L2[[i]]$coefficients[ll-2]
nl_coeffB1_L2[i, 6] <- nl_modtot_L2[[i]]$coefficients[ll-2]-(1.96*est$se[ll-2])
nl_coeffB1_L2[i, 7] <- nl_modtot_L2[[i]]$coefficients[ll-2]+(1.96*est$se[ll-2])
nl_coeffB1_L2[i, 8] <- nl_modtot_L2[[i]]$coefficients[ll-1]
nl_coeffB1_L2[i, 9] <- nl_modtot_L2[[i]]$coefficients[ll-1]-(1.96*est$se[ll-1])
nl_coeffB1_L2[i, 10] <- nl_modtot_L2[[i]]$coefficients[ll]+(1.96*est$se[ll-1])
nl_coeffB1_L2[i, 11] <- nl_modtot_L2[[i]]$coefficients[ll]
nl_coeffB1_L2[i, 12] <- nl_modtot_L2[[i]]$coefficients[ll]-(1.96*est$se[ll])
nl_coeffB1_L2[i, 13] <- nl_modtot_L2[[i]]$coefficients[ll]+(1.96*est$se[ll])
pred_nnlin_L2[[i]]<-crosspred(yr,nl_modtot_L2[[i]],cen=0)
y_nl_L2[i,] <- pred_nnlin_L2[[i]]$coef
S_nl_L2[[i]] <- pred_nnlin_L2[[i]]$vcov
}
## Call: mvmeta(formula = y_nl ~ 1, S = S_nl, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 4
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 -0.0015 0.0009 -1.5432 0.1228 -0.0033 0.0004
## y2 0.0013 0.0012 1.1044 0.2694 -0.0010 0.0036
## y3 0.0041 0.0020 2.0910 0.0365 0.0003 0.0080 *
## y4 0.0108 0.0015 7.1996 0.0000 0.0078 0.0137 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0020 y1 y2 y3
## y2 0.0033 0.5270
## y3 0.0048 -0.2724 0.4722
## y4 0.0042 0.3827 0.9584 0.6968
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 178.5237 (df = 44), p-value = 0.0000
## I-square statistic = 75.4%
##
## 12 studies, 48 observations, 4 fixed and 10 random-effects parameters
## logLik AIC BIC
## 188.0033 -348.0066 -321.8098
## Call: mvmeta(formula = y_nl_L1 ~ 1, S = S_nl_L1, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 4
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 -0.0019 0.0010 -2.0283 0.0425 -0.0038 -0.0001 *
## y2 0.0015 0.0012 1.2510 0.2109 -0.0009 0.0039
## y3 0.0045 0.0021 2.1630 0.0305 0.0004 0.0085 *
## y4 0.0103 0.0014 7.5841 0.0000 0.0076 0.0129 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0019 y1 y2 y3
## y2 0.0033 0.38668
## y3 0.0047 0.12498 0.32632
## y4 0.0037 0.07009 0.93333 0.46723
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 173.6179 (df = 44), p-value = 0.0000
## I-square statistic = 74.7%
##
## 12 studies, 48 observations, 4 fixed and 10 random-effects parameters
## logLik AIC BIC
## 186.8885 -345.7771 -319.5803
## Call: mvmeta(formula = y_nl_L2 ~ 1, S = S_nl_L2, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 4
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 -0.0016 0.0009 -1.7502 0.0801 -0.0033 0.0002 .
## y2 0.0010 0.0012 0.8423 0.3996 -0.0013 0.0033
## y3 0.0045 0.0020 2.2905 0.0220 0.0007 0.0084 *
## y4 0.0108 0.0016 6.6257 0.0000 0.0076 0.0140 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0016 y1 y2 y3
## y2 0.0029 0.33565
## y3 0.0044 -0.04287 0.23726
## y4 0.0044 0.16962 0.48192 0.55411
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 169.1722 (df = 44), p-value = 0.0000
## I-square statistic = 74.0%
##
## 12 studies, 48 observations, 4 fixed and 10 random-effects parameters
## logLik AIC BIC
## 188.1874 -348.3748 -322.1780