Descriptive Statistics for PM10

Descriptive Statistics for pm10
Ville Minimum X1st.Qu Median Mean X3rd.Qu Max NA.s
bordeaux 0.0000000 17.00000 22.33333 24.68781 29.49141 101.66667 859
clermont 2.0000000 12.66667 17.50000 19.80135 24.00000 105.75000 372
grenoble 3.0000000 17.00000 24.00000 27.29601 34.00000 110.50000 821
lehavre 5.0416667 16.79354 21.66667 24.75754 29.33333 123.66667 415
lille 0.0000000 16.50000 22.00000 25.53733 30.50000 131.00000 863
lyon 3.0729167 16.11979 22.69792 26.41374 32.00000 167.00000 2648
marseille 4.8229167 22.66667 30.33333 31.90142 39.00000 120.00000 432
montpellier 1.0000000 13.67437 21.00000 22.40362 29.00000 131.41667 751
nancy 0.0000000 14.00000 19.71875 22.13904 27.00000 178.00000 1743
nantes 4.5000000 14.72830 19.00000 21.44513 25.33333 112.00000 423
nice -1.0000000 22.91667 28.45312 29.39850 34.85417 127.58333 2401
paris 7.0000000 22.50000 28.80000 31.49370 37.32765 153.50000 395
rennes 0.0000000 12.50000 17.00000 19.34861 23.00000 101.50000 798
rouen 0.3958333 17.67969 22.50000 25.34694 29.50000 116.50000 407
strasbourg 2.0000000 16.25000 22.66667 25.45405 31.33333 167.00000 474
toulouse 3.2000000 14.44066 19.60000 21.15854 26.00000 95.33333 500

Descriptive Statistics for pm10 by period (to complete….)

Dose-Response Curves for PM10 and Non-accidental Mortality, Basic Model

For Lag0, Lag1 and Lag2 exposure

Ville Coefficient_L0 L0_CI95_Low L0_CI95_High Coefficient_L1 L1_CI95_Low L1_CI95_High Coefficient_L2 L2_CI95_Low L2_CI95_High
bordeaux 0.999 0.996 1.002 1.001 0.998 1.004 1.001 0.998 1.004
clermont 0.997 0.993 1.002 0.996 0.991 1.000 0.997 0.993 1.002
grenoble 0.995 0.992 0.998 0.997 0.994 1.000 0.997 0.994 1.000
lehavre 1.000 0.996 1.004 1.000 0.996 1.004 0.999 0.995 1.003
lille 0.999 0.997 1.001 0.998 0.997 1.000 0.999 0.997 1.001
lyon 0.998 0.996 1.000 0.998 0.996 1.001 0.998 0.996 1.000
marseille 1.001 0.999 1.003 1.000 0.998 1.002 1.000 0.999 1.002
montpellier 1.000 0.997 1.004 1.000 0.996 1.003 0.999 0.995 1.003
nancy 1.001 0.997 1.005 1.000 0.996 1.004 1.000 0.997 1.004
nantes 0.999 0.995 1.002 1.001 0.997 1.004 0.999 0.995 1.003
nice 0.999 0.995 1.003 1.000 0.996 1.004 1.002 0.998 1.006
paris 1.001 1.000 1.002 1.001 1.000 1.002 1.001 1.001 1.002
rennes 1.000 0.995 1.005 1.002 0.997 1.007 1.000 0.995 1.005
rouen 1.004 1.001 1.007 1.001 0.998 1.004 0.997 0.994 1.001
strasbourg 1.004 1.001 1.007 1.004 1.001 1.007 1.003 1.000 1.006
toulouse 1.000 0.997 1.004 1.001 0.997 1.004 0.998 0.995 1.002

Meta-Analysis results

## Call:  mvmeta(formula = y ~ 1, S = S, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0001      0.0006  -0.1752    0.8609   -0.0012    0.0010   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0016
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 34.2692 (df = 15), p-value = 0.0031
## I-square statistic = 56.2%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   74.8743  -145.7487  -144.2035
## Call:  mvmeta(formula = y_L1 ~ 1, S = S_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0000      0.0005  0.0645    0.9485   -0.0009    0.0010   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0012
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 28.9041 (df = 15), p-value = 0.0165
## I-square statistic = 48.1%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   77.1258  -150.2516  -148.7065
## Call:  mvmeta(formula = y_L2 ~ 1, S = S_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0003      0.0005  -0.5966    0.5507   -0.0012    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0012
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 29.4216 (df = 15), p-value = 0.0142
## I-square statistic = 49.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   77.9122  -151.8245  -150.2793

Pooled Dose-Responses Curves For Basic Model

3 Periods Stratified analysis

For Lag0, Lag1 and Lag2 exposure

Meta-Analysis results

For Lag0

First Period:

## Call:  mvmeta(formula = y0105 ~ 1, S = S0105, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0015      0.0013  -1.1479    0.2510   -0.0041    0.0011   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0032
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 25.1285 (df = 12), p-value = 0.0142
## I-square statistic = 52.2%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##   logLik       AIC       BIC  
##  49.9554  -95.9107  -94.7808

Second Period:

## Call:  mvmeta(formula = y0610 ~ 1, S = S0610, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0006      0.0005  1.1589    0.2465   -0.0004    0.0016   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 11.5801 (df = 15), p-value = 0.7105
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   74.1314  -144.2627  -142.7175

Third Period:

## Call:  mvmeta(formula = y1115 ~ 1, S = S1115, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0004      0.0005  0.7794    0.4358   -0.0006    0.0014   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 17.0436 (df = 15), p-value = 0.3163
## I-square statistic = 12.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   72.0013  -140.0026  -138.4575

Results for Lag1

First Period:

## Call:  mvmeta(formula = y0105_L1 ~ 1, S = S0105_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0010      0.0013  -0.7731    0.4395   -0.0036    0.0016   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0031
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 26.4126 (df = 12), p-value = 0.0094
## I-square statistic = 54.6%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##   logLik       AIC       BIC  
##  48.7583  -93.5166  -92.3867

Second Period:

## Call:  mvmeta(formula = y0610_L1 ~ 1, S = S0610_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0006      0.0005  1.1140    0.2653   -0.0005    0.0016   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0003
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 14.0392 (df = 15), p-value = 0.5226
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   72.8452  -141.6904  -140.1453

Third Period:

## Call:  mvmeta(formula = y1115_L1 ~ 1, S = S1115_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0007      0.0005  1.4733    0.1407   -0.0002    0.0017   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 7.5201 (df = 15), p-value = 0.9416
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   76.6982  -149.3963  -147.8511

Results for Lag2

First Period:

## Call:  mvmeta(formula = y0105_L2 ~ 1, S = S0105_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0006      0.0007  -0.7905    0.4293   -0.0020    0.0008   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 7.8699 (df = 12), p-value = 0.7952
## I-square statistic = 1.0%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   57.5897  -111.1794  -110.0495

Second Period:

## Call:  mvmeta(formula = y0610_L2 ~ 1, S = S0610_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0001      0.0006  0.1381    0.8901   -0.0012    0.0014   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0011
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 16.2683 (df = 15), p-value = 0.3644
## I-square statistic = 7.8%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   73.0060  -142.0120  -140.4668

Third Period:

## Call:  mvmeta(formula = y1115_L2 ~ 1, S = S1115_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0000      0.0005  0.0560    0.9553   -0.0010    0.0010   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 12.4608 (df = 15), p-value = 0.6439
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   74.3724  -144.7447  -143.1995

Table of results: change in mortality risk per 10 μg/m3 increase in PM10 for 3 time periods, with Temporal Change expressed in percentage points

####Results for Lag0

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 1.015 0.946 1.090 0.991 0.935 1.051 0.983 0.939 1.030 -2.407 -0.790
clermont 0.929 0.836 1.033 0.975 0.899 1.057 1.006 0.933 1.083 4.664 3.071
grenoble 0.856 0.788 0.929 0.973 0.920 1.029 1.028 0.971 1.089 11.780 5.503
lehavre 1.008 0.918 1.107 0.985 0.914 1.062 0.954 0.886 1.027 -2.292 -3.102
lille 0.933 0.888 0.981 0.993 0.964 1.023 1.018 0.987 1.050 5.970 2.514
lyon NA NA NA 1.008 0.969 1.048 0.982 0.946 1.019 NA -2.587
marseille 0.999 0.959 1.041 1.019 0.983 1.057 1.018 0.985 1.052 2.018 -0.102
montpellier 1.026 0.955 1.104 0.961 0.891 1.037 1.016 0.957 1.079 -6.555 5.534
nancy NA NA NA 0.985 0.931 1.042 1.035 0.969 1.104 NA 4.947
nantes 1.020 0.930 1.119 1.007 0.946 1.071 0.973 0.914 1.037 -1.318 -3.366
nice NA NA NA 0.988 0.925 1.054 0.957 0.898 1.020 NA -3.112
paris 0.996 0.976 1.015 1.009 0.994 1.025 0.998 0.982 1.013 1.303 -1.104
rennes 1.030 0.905 1.174 0.971 0.886 1.066 0.979 0.889 1.079 -5.904 0.780
rouen 0.985 0.912 1.063 1.039 0.985 1.095 1.054 1.000 1.113 5.362 1.570
strasbourg 1.051 0.982 1.125 1.046 0.990 1.105 1.044 0.992 1.099 -0.524 -0.209
toulouse 0.969 0.900 1.042 1.048 0.983 1.117 1.023 0.965 1.085 7.962 -2.486
Period1 Period2 Period3 change12 change23
0.9984701 1.000597 1.000597 2.118354 0

####Results for Lag1

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 1.003 0.935 1.077 1.020 0.964 1.081 1.017 0.971 1.065 1.720 -0.306
clermont 0.913 0.820 1.016 0.964 0.889 1.046 0.973 0.900 1.052 5.066 0.969
grenoble 0.899 0.826 0.980 0.977 0.924 1.033 1.034 0.976 1.094 7.784 5.629
lehavre 1.022 0.932 1.122 0.933 0.863 1.009 0.985 0.917 1.060 -8.892 5.179
lille 0.933 0.887 0.982 0.993 0.964 1.023 1.001 0.969 1.033 5.970 0.798
lyon NA NA NA 1.007 0.969 1.047 0.985 0.948 1.022 NA -2.191
marseille 0.985 0.946 1.027 1.013 0.976 1.051 0.997 0.965 1.031 2.797 -1.608
montpellier 1.000 0.928 1.077 0.953 0.882 1.029 1.017 0.957 1.082 -4.687 6.401
nancy NA NA NA 0.970 0.917 1.026 1.018 0.953 1.089 NA 4.772
nantes 1.084 0.989 1.188 1.020 0.958 1.087 0.995 0.934 1.059 -6.417 -2.519
nice NA NA NA 1.003 0.939 1.071 0.983 0.924 1.047 NA -1.986
paris 0.993 0.973 1.012 1.016 1.001 1.031 1.011 0.995 1.026 2.310 -0.507
rennes 1.132 1.001 1.280 0.980 0.895 1.075 1.012 0.919 1.113 -15.182 3.187
rouen 0.931 0.860 1.007 1.001 0.947 1.058 1.024 0.970 1.082 7.047 2.329
strasbourg 1.040 0.970 1.115 1.030 0.977 1.088 1.045 0.993 1.100 -0.932 1.453
toulouse 1.024 0.954 1.100 1.033 0.969 1.102 1.011 0.952 1.074 0.823 -2.146

####Results for Lag2

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 1.011 0.945 1.081 1.010 0.954 1.069 1.010 0.966 1.057 -0.101 0.000
clermont 0.967 0.871 1.074 1.028 0.955 1.107 0.928 0.858 1.003 6.182 -10.065
grenoble 0.974 0.898 1.058 0.984 0.933 1.038 1.005 0.951 1.062 0.979 2.089
lehavre 0.914 0.829 1.007 0.970 0.902 1.045 0.990 0.922 1.063 5.651 1.960
lille 0.991 0.944 1.041 0.985 0.956 1.014 0.996 0.965 1.027 -0.593 1.090
lyon NA NA NA 1.004 0.969 1.042 0.978 0.943 1.014 NA -2.577
marseille 1.018 0.977 1.060 1.006 0.970 1.043 1.001 0.969 1.035 -1.214 -0.502
montpellier 0.983 0.912 1.060 0.987 0.916 1.064 1.006 0.946 1.069 0.394 1.893
nancy NA NA NA 0.963 0.912 1.017 1.035 0.970 1.104 NA 7.187
nantes 1.009 0.919 1.106 1.024 0.964 1.088 0.960 0.903 1.020 1.525 -6.446
nice NA NA NA 1.014 0.949 1.082 1.015 0.954 1.080 NA 0.101
paris 0.995 0.975 1.015 1.020 1.005 1.036 1.008 0.992 1.023 2.519 -1.217
rennes 0.980 0.859 1.117 0.979 0.897 1.069 1.002 0.911 1.102 -0.098 2.278
rouen 0.940 0.869 1.016 0.946 0.896 1.000 0.967 0.913 1.022 0.660 2.009
strasbourg 1.023 0.955 1.096 1.024 0.973 1.078 1.030 0.979 1.084 0.102 0.616
toulouse 0.998 0.930 1.071 0.990 0.929 1.054 0.983 0.926 1.043 -0.795 -0.691

Metanalysis of the results

Pooled Dose-Responses Curves

L0

L1

L2

Doses-Response Curves by cities

Bordeaux

Lag 0

Lag1

Lag2

Clermont-Ferrand

Lag 0

Lag 1

Lag 2

Grenoble

Lag 0

Lag 1

Lag 2

Le Havre

Lag 0

Lag 1

Lag 2

Lille

Lag 0

Lag 1

Lag 2

Lyon

Lag 0

Lag 1

Lag 2

Marseille

Lag 0

Lag 1

Lag 2

Montpellier

Lag 0

Lag 1

Lag 2

Nancy

Lag 0

Lag 1

Lag 2

Nantes

Lag 0

Lag 1

Lag 2

Nice

Lag 0

Lag 1

Lag 2

Paris

Lag 0

Lag 1

Lag 2

Rennes

Lag 0

Lag 1

Lag 2

Rouen

Lag 0

Lag 1

Lag 2

Strasbourg

Lag 0

Lag 1

Lag 2

Toulouse

Lag 0

Lag 1

Lag 2