Descriptive Statistics for PM10

Descriptive Statistics for pm10
Ville Minimum X1st.Qu Median Mean X3rd.Qu Max NA.s
bordeaux 0.0000000 17.00000 22.33333 24.68781 29.49141 101.66667 859
clermont 2.0000000 12.66667 17.50000 19.80135 24.00000 105.75000 372
grenoble 3.0000000 17.00000 24.00000 27.29601 34.00000 110.50000 821
lehavre 5.0416667 16.79354 21.66667 24.75754 29.33333 123.66667 415
lille 0.0000000 16.50000 22.00000 25.53733 30.50000 131.00000 863
lyon 3.0729167 16.11979 22.69792 26.41374 32.00000 167.00000 2648
marseille 4.8229167 22.66667 30.33333 31.90142 39.00000 120.00000 432
montpellier 1.0000000 13.67437 21.00000 22.40362 29.00000 131.41667 751
nancy 0.0000000 14.00000 19.71875 22.13904 27.00000 178.00000 1743
nantes 4.5000000 14.72830 19.00000 21.44513 25.33333 112.00000 423
nice -1.0000000 22.91667 28.45312 29.39850 34.85417 127.58333 2401
paris 7.0000000 22.50000 28.80000 31.49370 37.32765 153.50000 395
rennes 0.0000000 12.50000 17.00000 19.34861 23.00000 101.50000 798
rouen 0.3958333 17.67969 22.50000 25.34694 29.50000 116.50000 407
strasbourg 2.0000000 16.25000 22.66667 25.45405 31.33333 167.00000 474
toulouse 3.2000000 14.44066 19.60000 21.15854 26.00000 95.33333 500

Descriptive Statistics for pm10 by period (to complete….)

Dose-Response Curves for PM10 and Non-accidental Mortality, Basic Model

For Lag0, Lag1 and Lag2 exposure

Ville Coefficient_L0 L0_CI95_Low L0_CI95_High Coefficient_L1 L1_CI95_Low L1_CI95_High Coefficient_L2 L2_CI95_Low L2_CI95_High
bordeaux 1.001 0.999 1.002 1.002 1.000 1.003 1.001 1.000 1.003
clermont 1.000 0.998 1.002 1.001 0.999 1.003 1.001 0.999 1.003
grenoble 1.000 0.998 1.001 1.001 1.000 1.002 1.001 1.000 1.002
lehavre 1.002 1.000 1.004 1.002 1.000 1.004 1.002 1.000 1.003
lille 1.001 1.000 1.002 1.001 1.000 1.002 1.001 1.000 1.002
lyon 1.000 0.998 1.001 0.999 0.998 1.001 1.001 0.999 1.002
marseille 1.000 0.999 1.001 0.999 0.998 1.000 1.000 0.999 1.001
montpellier 1.002 1.000 1.004 1.001 0.999 1.003 1.001 0.999 1.003
nancy 1.000 0.998 1.002 0.999 0.996 1.001 0.999 0.997 1.001
nantes 1.000 0.998 1.002 1.000 0.998 1.001 1.000 0.999 1.002
nice 1.003 1.001 1.005 1.002 1.000 1.005 1.001 0.999 1.003
paris 0.999 0.999 1.000 1.000 0.999 1.000 0.999 0.999 1.000
rennes 1.000 0.998 1.003 1.001 0.998 1.003 1.000 0.997 1.003
rouen 0.999 0.998 1.001 1.000 0.999 1.002 1.000 0.998 1.001
strasbourg 1.000 0.999 1.002 1.000 0.999 1.002 1.000 0.999 1.002
toulouse 1.000 0.999 1.002 1.001 0.999 1.002 1.001 0.999 1.003

Meta-Analysis results

## Call:  mvmeta(formula = y ~ 1, S = S, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0003      0.0002  1.3055    0.1917   -0.0002    0.0008   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0005
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 27.1392 (df = 15), p-value = 0.0276
## I-square statistic = 44.7%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   88.3677  -172.7354  -171.1902
## Call:  mvmeta(formula = y_L1 ~ 1, S = S_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0004      0.0003  1.6366    0.1017   -0.0001    0.0009   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0006
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 30.2930 (df = 15), p-value = 0.0109
## I-square statistic = 50.5%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   87.3969  -170.7939  -169.2487
## Call:  mvmeta(formula = y_L2 ~ 1, S = S_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0003      0.0002  1.5413    0.1233   -0.0001    0.0007   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0004
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 18.9320 (df = 15), p-value = 0.2168
## I-square statistic = 20.8%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   92.2195  -180.4390  -178.8938

Pooled Dose-Responses Curves For Basic Model

3 Periods Stratified analysis

For Lag0, Lag1 and Lag2 exposure

Meta-Analysis results

Results for Lag0

First Period:

## Call:  mvmeta(formula = y0105 ~ 1, S = S0105, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0002      0.0003  0.6033    0.5463   -0.0005    0.0009   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 8.6322 (df = 12), p-value = 0.7340
## I-square statistic = 1.0%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   67.1544  -130.3089  -129.1790

Second Period:

## Call:  mvmeta(formula = y0610 ~ 1, S = S0610, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0001      0.0003  0.5140    0.6072   -0.0004    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 13.6437 (df = 15), p-value = 0.5527
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   84.7671  -165.5341  -163.9890

Third Period:

## Call:  mvmeta(formula = y1115 ~ 1, S = S1115, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0004      0.0003  -1.5051    0.1323   -0.0010    0.0001   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0002
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 12.4289 (df = 15), p-value = 0.6463
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   84.0753  -164.1506  -162.6054

Results For Lag1

First Period:

## Call:  mvmeta(formula = y0105_L1 ~ 1, S = S0105_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0002      0.0003  0.6111    0.5411   -0.0005    0.0009   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 7.4933 (df = 12), p-value = 0.8234
## I-square statistic = 1.0%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   67.5999  -131.1999  -130.0700

Second Period:

## Call:  mvmeta(formula = y0610_L1 ~ 1, S = S0610_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0001      0.0003  -0.1745    0.8615   -0.0007    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0006
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 19.2511 (df = 15), p-value = 0.2026
## I-square statistic = 22.1%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   82.1195  -160.2390  -158.6939

Third Period:

## Call:  mvmeta(formula = y1115_L1 ~ 1, S = S1115_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0001      0.0003  0.2219    0.8244   -0.0005    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 11.4157 (df = 15), p-value = 0.7226
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   84.5292  -165.0584  -163.5133

Results for Lag2

First Period:

## Call:  mvmeta(formula = y0105_L2 ~ 1, S = S0105_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0001      0.0003  0.1529    0.8785   -0.0006    0.0007   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 6.3634 (df = 12), p-value = 0.8967
## I-square statistic = 1.0%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   68.2402  -132.4803  -131.3504

Second Period:

## Call:  mvmeta(formula = y0610_L2 ~ 1, S = S0610_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0001      0.0003  -0.2483    0.8039   -0.0007    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0006
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 21.0612 (df = 15), p-value = 0.1349
## I-square statistic = 28.8%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   81.8479  -159.6959  -158.1507

Third Period:

## Call:  mvmeta(formula = y1115_L2 ~ 1, S = S1115_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0000      0.0003  0.1229    0.9022   -0.0005    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 7.8748 (df = 15), p-value = 0.9287
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   86.4956  -168.9912  -167.4460

Table of results: change in mortality risk per 10 μg/m3 increase in PM10 for 3 time periods, with Temporal Change expressed in percentage points

####Results for Lag0

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 1.012 0.979 1.047 0.995 0.968 1.024 0.998 0.972 1.024 -1.706 0.299
clermont 1.004 0.962 1.047 1.008 0.971 1.045 0.989 0.951 1.027 0.402 -1.897
grenoble 0.982 0.946 1.018 0.997 0.973 1.021 1.007 0.976 1.038 1.484 1.002
lehavre 1.001 0.957 1.048 1.034 0.999 1.068 1.007 0.971 1.044 3.255 -2.653
lille 1.019 0.995 1.043 1.002 0.987 1.017 0.994 0.975 1.013 -1.718 -0.798
lyon NA NA NA 0.996 0.977 1.015 0.977 0.958 0.997 NA -1.875
marseille 1.000 0.980 1.020 0.991 0.973 1.008 1.001 0.983 1.020 -0.896 0.996
montpellier 1.000 0.967 1.035 1.037 1.001 1.074 1.013 0.980 1.046 3.666 -2.357
nancy NA NA NA 1.003 0.972 1.035 1.010 0.971 1.049 NA 0.705
nantes 0.989 0.945 1.035 1.006 0.977 1.036 1.022 0.990 1.055 1.696 1.623
nice NA NA NA 1.024 0.993 1.058 1.007 0.974 1.041 NA -1.727
paris 0.998 0.989 1.008 1.002 0.994 1.010 0.990 0.981 0.999 0.400 -1.195
rennes 1.052 0.982 1.126 0.994 0.947 1.043 1.016 0.964 1.073 -5.830 2.211
rouen 0.991 0.956 1.026 0.994 0.969 1.020 0.987 0.960 1.015 0.298 -0.693
strasbourg 1.016 0.986 1.047 0.996 0.969 1.023 1.004 0.976 1.033 -2.012 0.800
toulouse 1.018 0.987 1.051 0.981 0.951 1.012 0.998 0.967 1.030 -3.698 1.682
Period1 Period2 Period3 change12 change23
1.000206 1.00013 1.00013 -0.0753733 0

####Results for Lag1

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 1.019 0.986 1.053 0.997 0.969 1.026 1.011 0.985 1.038 -2.218 1.406
clermont 1.018 0.975 1.063 1.010 0.973 1.048 0.998 0.960 1.038 -0.811 -1.205
grenoble 1.003 0.966 1.041 1.014 0.991 1.039 1.004 0.973 1.036 1.109 -1.009
lehavre 0.986 0.942 1.033 1.038 1.004 1.073 1.003 0.968 1.040 5.160 -3.469
lille 1.003 0.978 1.027 1.007 0.992 1.022 1.007 0.988 1.026 0.402 0.000
lyon NA NA NA 0.983 0.965 1.003 0.980 0.960 1.000 NA -0.295
marseille 0.996 0.976 1.016 0.976 0.960 0.994 0.991 0.973 1.010 -1.972 1.475
montpellier 0.994 0.960 1.028 1.007 0.970 1.044 1.018 0.985 1.052 1.301 1.114
nancy NA NA NA 0.992 0.962 1.023 1.011 0.972 1.050 NA 1.903
nantes 0.993 0.947 1.040 0.995 0.967 1.024 1.017 0.985 1.050 0.199 2.213
nice NA NA NA 1.001 0.969 1.034 1.020 0.988 1.054 NA 1.920
paris 0.998 0.989 1.008 1.001 0.994 1.009 0.999 0.990 1.008 0.300 -0.200
rennes 1.021 0.955 1.093 1.007 0.960 1.057 1.022 0.969 1.078 -1.420 1.522
rouen 1.007 0.971 1.044 1.005 0.980 1.031 0.995 0.968 1.023 -0.201 -1.000
strasbourg 1.031 1.000 1.063 0.985 0.959 1.011 1.008 0.980 1.037 -4.637 2.292
toulouse 1.012 0.981 1.045 1.007 0.976 1.039 0.990 0.958 1.022 -0.505 -1.697

####Results for Lag2

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 1.001 0.969 1.035 1.010 0.982 1.039 1.008 0.982 1.034 0.905 -0.202
clermont 1.007 0.965 1.051 0.993 0.959 1.029 0.995 0.958 1.033 -1.400 0.199
grenoble 0.991 0.956 1.028 1.019 0.996 1.042 0.992 0.963 1.022 2.814 -2.715
lehavre 1.008 0.964 1.054 1.033 0.999 1.066 0.984 0.949 1.020 2.449 -4.839
lille 0.993 0.969 1.018 1.005 0.990 1.020 0.999 0.980 1.018 1.199 -0.601
lyon NA NA NA 1.004 0.986 1.022 0.993 0.973 1.013 NA -1.098
marseille 1.015 0.995 1.036 0.977 0.960 0.994 1.007 0.988 1.025 -3.785 2.976
montpellier 0.995 0.962 1.030 1.005 0.969 1.042 1.016 0.983 1.050 1.000 1.112
nancy NA NA NA 1.002 0.972 1.031 0.994 0.956 1.033 NA -0.798
nantes 1.022 0.976 1.070 0.990 0.962 1.018 1.018 0.987 1.050 -3.219 2.811
nice NA NA NA 0.979 0.948 1.010 1.018 0.985 1.051 NA 3.894
paris 0.999 0.989 1.008 0.994 0.987 1.002 0.997 0.988 1.006 -0.498 0.299
rennes 0.992 0.926 1.062 1.009 0.964 1.057 1.003 0.951 1.057 1.701 -0.604
rouen 1.014 0.979 1.050 0.987 0.962 1.012 0.992 0.965 1.019 -2.701 0.495
strasbourg 0.999 0.969 1.029 0.996 0.971 1.022 1.012 0.984 1.040 -0.299 1.606
toulouse 0.979 0.948 1.011 1.020 0.991 1.051 1.011 0.979 1.044 4.098 -0.914

Metanalysis of the results

Pooled Dose-Responses Curves

L0

L1

L2

Doses-Response Curves by cities

Bordeaux

Lag 0

Lag1

Lag2

Clermont-Ferrand

Lag 0

Lag 1

Lag 2

Grenoble

Lag 0

Lag 1

Lag 2

Le Havre

Lag 0

Lag 1

Lag 2

Lille

Lag 0

Lag 1

Lag 2

Lyon

Lag 0

Lag 1

Lag 2

Marseille

Lag 0

Lag 1

Lag 2

Montpellier

Lag 0

Lag 1

Lag 2

Nancy

Lag 0

Lag 1

Lag 2

Nantes

Lag 0

Lag 1

Lag 2

Nice

Lag 0

Lag 1

Lag 2

Paris

Lag 0

Lag 1

Lag 2

Rennes

Lag 0

Lag 1

Lag 2

Rouen

Lag 0

Lag 1

Lag 2

Strasbourg

Lag 0

Lag 1

Lag 2

Toulouse

Lag 0

Lag 1

Lag 2