Introduction to R and RStudio

R Studio Interface

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.0.5     v dplyr   1.0.3
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(openintro)
## Loading required package: airports
## Loading required package: cherryblossom
## Loading required package: usdata

Dr. Arbuthnot’s Baptism Records

arbuthnot
## # A tibble: 82 x 3
##     year  boys girls
##    <int> <int> <int>
##  1  1629  5218  4683
##  2  1630  4858  4457
##  3  1631  4422  4102
##  4  1632  4994  4590
##  5  1633  5158  4839
##  6  1634  5035  4820
##  7  1635  5106  4928
##  8  1636  4917  4605
##  9  1637  4703  4457
## 10  1638  5359  4952
## # ... with 72 more rows

Some Exploration

arbuthnot$boys
##  [1] 5218 4858 4422 4994 5158 5035 5106 4917 4703 5359 5366 5518 5470 5460 4793
## [16] 4107 4047 3768 3796 3363 3079 2890 3231 3220 3196 3441 3655 3668 3396 3157
## [31] 3209 3724 4748 5216 5411 6041 5114 4678 5616 6073 6506 6278 6449 6443 6073
## [46] 6113 6058 6552 6423 6568 6247 6548 6822 6909 7577 7575 7484 7575 7737 7487
## [61] 7604 7909 7662 7602 7676 6985 7263 7632 8062 8426 7911 7578 8102 8031 7765
## [76] 6113 8366 7952 8379 8239 7840 7640

Exercise 1: What command would you use to extract just the counts of girls baptized? Try it out in the console!

arbuthnot$girls
##  [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288

Data Visualization

ggplot(data = arbuthnot, aes(x = year, y = girls)) + 
  geom_point()

ggplot(data = arbuthnot, aes(x = year, y = girls)) +
  geom_line()

Exercise 2: Is there an apparent trend in the number of girls baptized over the years? How would you describe it?

There is an upward trend in the number of girls baptized after approximately year 1660.

R as a Big Calculator

arbuthnot$boys + arbuthnot$girls
##  [1]  9901  9315  8524  9584  9997  9855 10034  9522  9160 10311 10150 10850
## [13] 10670 10370  9410  8104  7966  7163  7332  6544  5825  5612  6071  6128
## [25]  6155  6620  7004  7050  6685  6170  5990  6971  8855 10019 10292 11722
## [37]  9972  8997 10938 11633 12335 11997 12510 12563 11895 11851 11775 12399
## [49] 12626 12601 12288 12847 13355 13653 14735 14702 14730 14694 14951 14588
## [61] 14771 15211 15054 14918 15159 13632 13976 14861 15829 16052 15363 14639
## [73] 15616 15687 15448 11851 16145 15369 16066 15862 15220 14928

Adding a New Variable to the Data Frame

arbuthnot <- arbuthnot %>%
  mutate(total = boys + girls)
ggplot(data = arbuthnot, aes(x = year, y = total)) + 
  geom_line()

arbuthnot <- arbuthnot %>%
  mutate(boy_to_girl_ratio = boys / girls)
arbuthnot <- arbuthnot %>%
  mutate(boy_ratio = boys / total)

Exercise 3: Now, generate a plot of the proportion of boys born over time. What do you see?

ggplot(data = arbuthnot, aes(x = year, y = boys/total)) + 
  geom_line()

There is a slight increase in boys born in 1660. Otherwise, it is difficult to make out any general trends.

arbuthnot <- arbuthnot %>%
  mutate(more_boys = boys > girls)

More Practice

Minimum and maximum amount of boy births in a year.

arbuthnot %>%
  summarize(min = min(boys), max = max(boys))
## # A tibble: 1 x 2
##     min   max
##   <int> <int>
## 1  2890  8426
# min: 2890 - max: 8426

present %>%
  summarize(min = min(boys), max = max(boys))
## # A tibble: 1 x 2
##       min     max
##     <dbl>   <dbl>
## 1 1211684 2186274
# min: 1,211,684 - max: 2,186,274

For the rest of the exercises, use the “present” data frame.

Exercise 4: What years are included in this data set? What are the dimensions of the data frame? What are the variable (column) names?

present$year
##  [1] 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
## [16] 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
## [31] 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
## [46] 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
## [61] 2000 2001 2002
# All of the years including and between 1940 and 2002. 
dim(present)
## [1] 63  3
# There are 62 years with the same three variables; year, boys and girls.
names(present)
## [1] "year"  "boys"  "girls"
# Column/variable names include: year, boys, and girls. 

Exercise 5: How do these counts compare to Arbuthnot’s? Are they of a similar magnitude?

Arbuthnot’s counts are in the thousands, while present data are in the millions.

##Exercise 6: Make a plot that displays the proportion of boys born over time. What do you see? Does Arbuthnot’s observation about boys being born in greater proportion than girls hold up in the U.S.? Include the plot in your response. Hint: You should be able to reuse your code from Exercise 3 above, just replace the name of the data frame.

present <- present %>%
  mutate(total = boys + girls)

present <- present %>%
  mutate(boy_ratio = boys / total)

ggplot(data = present, aes(x = year, y = boys/total)) + 
  geom_line()

No, boys are actually born in lower proportion than girls in the U.S.

Exercise 7: In what year did we see the most total number of births in the U.S.?

present %>%
  arrange(desc(total))
## # A tibble: 63 x 5
##     year    boys   girls   total boy_ratio
##    <dbl>   <dbl>   <dbl>   <dbl>     <dbl>
##  1  1961 2186274 2082052 4268326     0.512
##  2  1960 2179708 2078142 4257850     0.512
##  3  1957 2179960 2074824 4254784     0.512
##  4  1959 2173638 2071158 4244796     0.512
##  5  1958 2152546 2051266 4203812     0.512
##  6  1962 2132466 2034896 4167362     0.512
##  7  1956 2133588 2029502 4163090     0.513
##  8  1990 2129495 2028717 4158212     0.512
##  9  1991 2101518 2009389 4110907     0.511
## 10  1963 2101632 1996388 4098020     0.513
## # ... with 53 more rows

The most total number of births in the U.S. occurred in the year 1961.