Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)
library(rcompanion)
library(car)

Stroop Color-Word Test - Psychological Aggression

Model 1

SCWTlog1 <- glm(PsychAggress ~ StroopMixed + WRATtotal, data=StroopMixed,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3162   0.4310   0.5141   0.5971   0.8945  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.12669    0.73270   0.173  0.86273   
## StroopMixed  0.03578    0.01327   2.695  0.00704 **
## WRATtotal    0.01227    0.01803   0.680  0.49637   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 452.04  on 547  degrees of freedom
## Residual deviance: 440.90  on 545  degrees of freedom
## AIC: 446.9
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                    2.5 %     97.5 %
## (Intercept) -1.286570015 1.59571559
## StroopMixed  0.009907112 0.06205782
## WRATtotal   -0.023723023 0.04716155
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                   OR     2.5 %   97.5 %
## (Intercept) 1.135063 0.2762166 4.931857
## StroopMixed 1.036423 1.0099563 1.064024
## WRATtotal   1.012341 0.9765562 1.048291
#Wald chi-square Test
Anova(SCWTlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##             Df  Chisq Pr(>Chisq)   
## StroopMixed  1 7.2637   0.007036 **
## WRATtotal    1 0.4627   0.496372   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Plots
plot(predictorEffect("StroopMixed",SCWTlog1))

########Compare to null model 
#Difference in Deviance
with(SCWTlog1,null.deviance - deviance)
## [1] 11.14145
#Degrees of freedom for the difference between two models
with(SCWTlog1,df.null - df.residual)
## [1] 2
#p-value
with(SCWTlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.003807722
#Pseudo R-Squared
nagelkerke(SCWTlog1)
## $Models
##                                                                            
## Model: "glm, PsychAggress ~ StroopMixed + WRATtotal, binomial, StroopMixed"
## Null:  "glm, PsychAggress ~ 1, binomial, StroopMixed"                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0246471
## Cox and Snell (ML)                  0.0201258
## Nagelkerke (Cragg and Uhler)        0.0358291
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq   p.value
##       -2     -5.5707 11.141 0.0038077
## 
## $Number.of.observations
##           
## Model: 548
## Null:  548
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

SCWTlog3 <- glm(PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3828   0.3929   0.5067   0.6024   0.9833  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      0.51878    1.25468   0.413   0.6793  
## StroopMixed                      0.04568    0.02265   2.016   0.0438 *
## SexMen                           0.36679    0.92214   0.398   0.6908  
## PovStatBelow                     0.47415    1.32994   0.357   0.7215  
## Age                             -0.01746    0.01506  -1.159   0.2463  
## WRATtotal                        0.01894    0.01836   1.032   0.3022  
## StroopMixed:SexMen              -0.02635    0.02888  -0.912   0.3615  
## StroopMixed:PovStatBelow        -0.01309    0.04323  -0.303   0.7621  
## SexMen:PovStatBelow             -0.12800    1.76637  -0.072   0.9422  
## StroopMixed:SexMen:PovStatBelow  0.01670    0.05833   0.286   0.7747  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 452.04  on 547  degrees of freedom
## Residual deviance: 434.45  on 538  degrees of freedom
## AIC: 454.45
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                                        2.5 %     97.5 %
## (Intercept)                     -1.933308023 2.99882242
## StroopMixed                      0.002187172 0.09153845
## SexMen                          -1.446357087 2.18326044
## PovStatBelow                    -2.110003807 3.15042319
## Age                             -0.047217545 0.01196513
## WRATtotal                       -0.017581384 0.05460431
## StroopMixed:SexMen              -0.083643507 0.02999360
## StroopMixed:PovStatBelow        -0.096984597 0.07394836
## SexMen:PovStatBelow             -3.603769499 3.36101186
## StroopMixed:SexMen:PovStatBelow -0.098817961 0.13091968
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                                        OR      2.5 %    97.5 %
## (Intercept)                     1.6799779 0.14466884 20.061899
## StroopMixed                     1.0467372 1.00218957  1.095859
## SexMen                          1.4430962 0.23542637  8.875196
## PovStatBelow                    1.6066418 0.12123750 23.345942
## Age                             0.9826880 0.95387986  1.012037
## WRATtotal                       1.0191218 0.98257227  1.056123
## StroopMixed:SexMen              0.9739945 0.91975909  1.030448
## StroopMixed:PovStatBelow        0.9869981 0.90756999  1.076751
## SexMen:PovStatBelow             0.8798572 0.02722092 28.818336
## StroopMixed:SexMen:PovStatBelow 1.0168376 0.90590760  1.139876
#Wald chi-square Test
Anova(SCWTlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##                         Df  Chisq Pr(>Chisq)  
## StroopMixed              1 4.4237    0.03544 *
## Sex                      1 1.6402    0.20030  
## PovStat                  1 0.8183    0.36567  
## Age                      1 1.3443    0.24627  
## WRATtotal                1 1.0645    0.30220  
## StroopMixed:Sex          1 0.7881    0.37469  
## StroopMixed:PovStat      1 0.0182    0.89275  
## Sex:PovStat              1 0.3890    0.53283  
## StroopMixed:Sex:PovStat  1 0.0819    0.77470  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Plots
plot(predictorEffect("StroopMixed",SCWTlog3))

########Compare to null model 
#Difference in Deviance
with(SCWTlog3,null.deviance - deviance)
## [1] 17.58857
#Degrees of freedom for the difference between two models
with(SCWTlog3,df.null - df.residual)
## [1] 9
#p-value
with(SCWTlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.04025829
#Pseudo R-Squared
nagelkerke(SCWTlog3)
## $Models
##                                                                                                      
## Model: "glm, PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal, binomial, StroopMixed"
## Null:  "glm, PsychAggress ~ 1, binomial, StroopMixed"                                                
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0389094
## Cox and Snell (ML)                  0.0315863
## Nagelkerke (Cragg and Uhler)        0.0562318
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -9     -8.7943 17.589 0.040258
## 
## $Number.of.observations
##           
## Model: 548
## Null:  548
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(SCWTlog1,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ StroopMixed + WRATtotal
## Model 2: PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       545     440.90                     
## 2       538     434.45  7   6.4471   0.4886

Stroop Color-Word Test - Physical Assault

Model 1

SCWTlog1 <- glm(PhysAssault ~ StroopMixed + WRATtotal, data=StroopMixed,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5774  -0.5127  -0.4892  -0.4591   2.1881  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -2.857230   0.879721  -3.248  0.00116 **
## StroopMixed  0.006762   0.014340   0.472  0.63727   
## WRATtotal    0.013278   0.021393   0.621  0.53481   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 391.02  on 547  degrees of freedom
## Residual deviance: 389.95  on 545  degrees of freedom
## AIC: 395.95
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                   2.5 %      97.5 %
## (Intercept) -4.66188126 -1.20130341
## StroopMixed -0.02126234  0.03505183
## WRATtotal   -0.02756450  0.05653464
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                     OR      2.5 %    97.5 %
## (Intercept) 0.05742761 0.00944867 0.3008019
## StroopMixed 1.00678464 0.97896211 1.0356734
## WRATtotal   1.01336672 0.97281194 1.0581633
#Wald chi-square Test
Anova(SCWTlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##             Df  Chisq Pr(>Chisq)
## StroopMixed  1 0.2223     0.6373
## WRATtotal    1 0.3853     0.5348
########Compare to null model 
#Difference in Deviance
with(SCWTlog1,null.deviance - deviance)
## [1] 1.070213
#Degrees of freedom for the difference between two models
with(SCWTlog1,df.null - df.residual)
## [1] 2
#p-value
with(SCWTlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.5856069
#Pseudo R-Squared
nagelkerke(SCWTlog1)
## $Models
##                                                                           
## Model: "glm, PhysAssault ~ StroopMixed + WRATtotal, binomial, StroopMixed"
## Null:  "glm, PhysAssault ~ 1, binomial, StroopMixed"                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00273699
## Cox and Snell (ML)                 0.00195104
## Nagelkerke (Cragg and Uhler)       0.00382488
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2    -0.53511 1.0702 0.58561
## 
## $Number.of.observations
##           
## Model: 548
## Null:  548
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

SCWTlog3 <- glm(PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8174  -0.5564  -0.4236  -0.3232   2.5111  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                     -2.78652    1.43745  -1.939   0.0526 .
## StroopMixed                      0.02099    0.02257   0.930   0.3524  
## SexMen                           1.84015    1.24297   1.480   0.1388  
## PovStatBelow                     1.24604    1.35126   0.922   0.3565  
## Age                             -0.02924    0.01667  -1.754   0.0794 .
## WRATtotal                        0.02940    0.02237   1.314   0.1888  
## StroopMixed:SexMen              -0.07248    0.03617  -2.004   0.0451 *
## StroopMixed:PovStatBelow        -0.02215    0.03823  -0.579   0.5623  
## SexMen:PovStatBelow             -2.03683    1.95253  -1.043   0.2969  
## StroopMixed:SexMen:PovStatBelow  0.07915    0.05825   1.359   0.1742  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 391.02  on 547  degrees of freedom
## Residual deviance: 371.47  on 538  degrees of freedom
## AIC: 391.47
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                                       2.5 %       97.5 %
## (Intercept)                     -5.66663487 -0.016991478
## StroopMixed                     -0.02299517  0.065885642
## SexMen                          -0.63428162  4.271705151
## PovStatBelow                    -1.46094828  3.874539036
## Age                             -0.06242361  0.003099514
## WRATtotal                       -0.01319397  0.074756970
## StroopMixed:SexMen              -0.14463657 -0.002266140
## StroopMixed:PovStatBelow        -0.09735843  0.053418320
## SexMen:PovStatBelow             -5.89405066  1.798465502
## StroopMixed:SexMen:PovStatBelow -0.03451700  0.194549935
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                                         OR       2.5 %     97.5 %
## (Intercept)                     0.06163505 0.003459487  0.9831521
## StroopMixed                     1.02121051 0.977267205  1.0681046
## SexMen                          6.29748378 0.530316321 71.6436948
## PovStatBelow                    3.47654803 0.232016154 48.1604929
## Age                             0.97118439 0.939484830  1.0031043
## WRATtotal                       1.02983659 0.986892686  1.0776222
## StroopMixed:SexMen              0.93008782 0.865336727  0.9977364
## StroopMixed:PovStatBelow        0.97809470 0.907230769  1.0548708
## SexMen:PovStatBelow             0.13044162 0.002755791  6.0403714
## StroopMixed:SexMen:PovStatBelow 1.08236894 0.966071912  1.2147641
#Wald chi-square Test
Anova(SCWTlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##                         Df  Chisq Pr(>Chisq)  
## StroopMixed              1 0.0095    0.92233  
## Sex                      1 0.8907    0.34528  
## PovStat                  1 5.3218    0.02106 *
## Age                      1 3.0774    0.07939 .
## WRATtotal                1 1.7272    0.18877  
## StroopMixed:Sex          1 2.1901    0.13890  
## StroopMixed:PovStat      1 0.1705    0.67966  
## Sex:PovStat              1 0.7309    0.39260  
## StroopMixed:Sex:PovStat  1 1.8464    0.17420  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Plots
interact_plot(model = SCWTlog3, pred = StroopMixed, modx = Sex)

sim_slopes(SCWTlog3, pred = StroopMixed, modx = Sex, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of StroopMixed when Sex = Men: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.03   0.02    -1.42   0.16
## 
## Slope of StroopMixed when Sex = Women: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.01   0.02     0.74   0.46
########Compare to null model 
#Difference in Deviance
with(SCWTlog3,null.deviance - deviance)
## [1] 19.55291
#Degrees of freedom for the difference between two models
with(SCWTlog3,df.null - df.residual)
## [1] 9
#p-value
with(SCWTlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.02088115
#Pseudo R-Squared
nagelkerke(SCWTlog3)
## $Models
##                                                                                                     
## Model: "glm, PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal, binomial, StroopMixed"
## Null:  "glm, PhysAssault ~ 1, binomial, StroopMixed"                                                
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0500051
## Cox and Snell (ML)                  0.0350515
## Nagelkerke (Cragg and Uhler)        0.0687160
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -9     -9.7765 19.553 0.020881
## 
## $Number.of.observations
##           
## Model: 548
## Null:  548
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(SCWTlog1,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ StroopMixed + WRATtotal
## Model 2: PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)   
## 1       545     389.95                        
## 2       538     371.47  7   18.483 0.009972 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1