Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)
library(rcompanion)
library(car)

Animal Naming Test - Psychological Aggression

Model 1

ANlog1 <- glm(PsychAggress ~ FluencyWord + WRATtotal, data=Allvars,family = "binomial")
summary(ANlog1)
## 
## Call:
## glm(formula = PsychAggress ~ FluencyWord + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1467   0.4854   0.5222   0.5561   0.7324  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.78911    0.66312   1.190    0.234
## FluencyWord  0.01647    0.02323   0.709    0.478
## WRATtotal    0.01757    0.01569   1.120    0.263
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 502.72  on 638  degrees of freedom
## AIC: 508.72
## 
## Number of Fisher Scoring iterations: 4
confint(ANlog1)
##                   2.5 %     97.5 %
## (Intercept) -0.48613879 2.12175343
## FluencyWord -0.02858561 0.06261612
## WRATtotal   -0.01377810 0.04792455
exp(cbind(OR = coef(ANlog1), confint(ANlog1)))
##                   OR     2.5 %   97.5 %
## (Intercept) 2.201430 0.6149964 8.345758
## FluencyWord 1.016608 0.9718191 1.064618
## WRATtotal   1.017724 0.9863164 1.049092
#Wald chi-square Test
Anova(ANlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##             Df  Chisq Pr(>Chisq)
## FluencyWord  1 0.5028     0.4783
## WRATtotal    1 1.2533     0.2629
########Compare to null model 
#Difference in Deviance
with(ANlog1,null.deviance - deviance)
## [1] 2.676568
#Degrees of freedom for the difference between two models
with(ANlog1,df.null - df.residual)
## [1] 2
#p-value
with(ANlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2622953
#Pseudo R-Squared
nagelkerke(ANlog1)
## $Models
##                                                                        
## Model: "glm, PsychAggress ~ FluencyWord + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00529593
## Cox and Snell (ML)                 0.00416691
## Nagelkerke (Cragg and Uhler)       0.00763933
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2     -1.3383 2.6766  0.2623
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

ANlog3 <- glm(PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3284   0.4143   0.4835   0.5639   1.0062  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      2.008377   1.153266   1.741   0.0816 .
## FluencyWord                      0.011820   0.038971   0.303   0.7617  
## SexMen                          -1.424781   1.027353  -1.387   0.1655  
## PovStatBelow                    -0.019326   1.426951  -0.014   0.9892  
## Age                             -0.020953   0.013261  -1.580   0.1141  
## WRATtotal                        0.019146   0.015830   1.209   0.2265  
## FluencyWord:SexMen               0.043940   0.052092   0.844   0.3989  
## FluencyWord:PovStatBelow         0.007169   0.077334   0.093   0.9261  
## SexMen:PovStatBelow              2.731876   2.084764   1.310   0.1901  
## FluencyWord:SexMen:PovStatBelow -0.119742   0.105978  -1.130   0.2585  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 490.61  on 631  degrees of freedom
## AIC: 510.61
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog3)
##                                       2.5 %     97.5 %
## (Intercept)                     -0.23228008 4.29821884
## FluencyWord                     -0.06215661 0.09117398
## SexMen                          -3.44849510 0.58663361
## PovStatBelow                    -2.81316385 2.80853892
## Age                             -0.04715221 0.00494707
## WRATtotal                       -0.01238725 0.04984477
## FluencyWord:SexMen              -0.05919918 0.14563277
## FluencyWord:PovStatBelow        -0.14070102 0.16460308
## SexMen:PovStatBelow             -1.31542020 6.89273664
## FluencyWord:SexMen:PovStatBelow -0.33129450 0.08587307
exp(cbind(OR = coef(ANlog3), confint(ANlog3)))
##                                         OR      2.5 %     97.5 %
## (Intercept)                      7.4512169 0.79272407  73.568640
## FluencyWord                      1.0118901 0.93973570   1.095460
## SexMen                           0.2405612 0.03179345   1.797926
## PovStatBelow                     0.9808595 0.06001481  16.585667
## Age                              0.9792650 0.95394219   1.004959
## WRATtotal                        1.0193306 0.98768916   1.051108
## FluencyWord:SexMen               1.0449201 0.94251902   1.156771
## FluencyWord:PovStatBelow         1.0071944 0.86874901   1.178925
## SexMen:PovStatBelow             15.3616755 0.26836153 985.093576
## FluencyWord:SexMen:PovStatBelow  0.8871492 0.71799369   1.089668
#Wald chi-square Test
Anova(ANlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##                         Df  Chisq Pr(>Chisq)  
## FluencyWord              1 0.8003    0.37101  
## Sex                      1 3.8177    0.05072 .
## PovStat                  1 0.9826    0.32155  
## Age                      1 2.4964    0.11410  
## WRATtotal                1 1.4628    0.22649  
## FluencyWord:Sex          1 0.1096    0.74061  
## FluencyWord:PovStat      1 1.1462    0.28436  
## Sex:PovStat              1 0.6926    0.40529  
## FluencyWord:Sex:PovStat  1 1.2766    0.25853  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
########Compare to null model 
#Difference in Deviance
with(ANlog3,null.deviance - deviance)
## [1] 14.78833
#Degrees of freedom for the difference between two models
with(ANlog3,df.null - df.residual)
## [1] 9
#p-value
with(ANlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.09691678
#Pseudo R-Squared
nagelkerke(ANlog3)
## $Models
##                                                                                                  
## Model: "glm, PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                                                
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0292606
## Cox and Snell (ML)                  0.0228066
## Nagelkerke (Cragg and Uhler)        0.0418121
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -9     -7.3942 14.788 0.096917
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(ANlog1,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ FluencyWord + WRATtotal
## Model 2: PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       638     502.72                       
## 2       631     490.61  7   12.112  0.09694 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Animal Naming Test - Physical Assault

Model 1

ANlog1 <- glm(PhysAssault ~ FluencyWord + WRATtotal, data=Allvars,family = "binomial")
summary(ANlog1)
## 
## Call:
## glm(formula = PhysAssault ~ FluencyWord + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6213  -0.5361  -0.5098  -0.4756   2.1770  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -2.36821    0.75469  -3.138   0.0017 **
## FluencyWord -0.02147    0.02364  -0.908   0.3638   
## WRATtotal    0.01914    0.01760   1.088   0.2768   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 481.02  on 638  degrees of freedom
## AIC: 487.02
## 
## Number of Fisher Scoring iterations: 4
confint(ANlog1)
##                   2.5 %      97.5 %
## (Intercept) -3.90449219 -0.93822551
## FluencyWord -0.06846401  0.02433492
## WRATtotal   -0.01443322  0.05470170
exp(cbind(OR = coef(ANlog1), confint(ANlog1)))
##                     OR      2.5 %    97.5 %
## (Intercept) 0.09364814 0.02015118 0.3913216
## FluencyWord 0.97876343 0.93382707 1.0246334
## WRATtotal   1.01932175 0.98567044 1.0562255
#Wald chi-square Test
Anova(ANlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##             Df  Chisq Pr(>Chisq)
## FluencyWord  1 0.8248     0.3638
## WRATtotal    1 1.1827     0.2768
########Compare to null model 
#Difference in Deviance
with(ANlog1,null.deviance - deviance)
## [1] 1.515757
#Degrees of freedom for the difference between two models
with(ANlog1,df.null - df.residual)
## [1] 2
#p-value
with(ANlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.4686597
#Pseudo R-Squared
nagelkerke(ANlog1)
## $Models
##                                                                       
## Model: "glm, PhysAssault ~ FluencyWord + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00314125
## Cox and Snell (ML)                 0.00236188
## Nagelkerke (Cragg and Uhler)       0.00446527
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2    -0.75788 1.5158 0.46866
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

ANlog3 <- glm(PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8525  -0.5493  -0.4681  -0.3801   2.5158  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                     -1.600446   1.212631  -1.320   0.1869  
## FluencyWord                      0.003624   0.036624   0.099   0.9212  
## SexMen                           0.975863   1.161915   0.840   0.4010  
## PovStatBelow                     1.495936   1.229964   1.216   0.2239  
## Age                             -0.034897   0.013937  -2.504   0.0123 *
## WRATtotal                        0.024426   0.018371   1.330   0.1837  
## FluencyWord:SexMen              -0.056565   0.056061  -1.009   0.3130  
## FluencyWord:PovStatBelow        -0.057081   0.064744  -0.882   0.3780  
## SexMen:PovStatBelow             -1.816965   1.938739  -0.937   0.3487  
## FluencyWord:SexMen:PovStatBelow  0.098700   0.097335   1.014   0.3106  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 466.97  on 631  degrees of freedom
## AIC: 486.97
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog3)
##                                       2.5 %       97.5 %
## (Intercept)                     -4.01506723  0.747960669
## FluencyWord                     -0.06998106  0.074381636
## SexMen                          -1.31267722  3.255391216
## PovStatBelow                    -0.90815521  3.931751771
## Age                             -0.06267745 -0.007917641
## WRATtotal                       -0.01061634  0.061555509
## FluencyWord:SexMen              -0.16772931  0.052793528
## FluencyWord:PovStatBelow        -0.18772678  0.067587070
## SexMen:PovStatBelow             -5.66030108  1.961694248
## FluencyWord:SexMen:PovStatBelow -0.09128825  0.291518237
exp(cbind(OR = coef(ANlog3), confint(ANlog3)))
##                                        OR       2.5 %     97.5 %
## (Intercept)                     0.2018065 0.018041742  2.1126872
## FluencyWord                     1.0036301 0.932411483  1.0772178
## SexMen                          2.6534555 0.269098655 25.9297567
## PovStatBelow                    4.4635102 0.403267482 50.9962332
## Age                             0.9657049 0.939246381  0.9921136
## WRATtotal                       1.0247266 0.989439812  1.0634895
## FluencyWord:SexMen              0.9450048 0.845582691  1.0542120
## FluencyWord:PovStatBelow        0.9445178 0.828841128  1.0699234
## SexMen:PovStatBelow             0.1625182 0.003481469  7.1113653
## FluencyWord:SexMen:PovStatBelow 1.1037354 0.912754575  1.3384580
#Wald chi-square Test
Anova(ANlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##                         Df  Chisq Pr(>Chisq)  
## FluencyWord              1 0.9577    0.32777  
## Sex                      1 0.2036    0.65182  
## PovStat                  1 3.5181    0.06070 .
## Age                      1 6.2696    0.01228 *
## WRATtotal                1 1.7678    0.18365  
## FluencyWord:Sex          1 0.2705    0.60301  
## FluencyWord:PovStat      1 0.0770    0.78134  
## Sex:PovStat              1 0.0245    0.87554  
## FluencyWord:Sex:PovStat  1 1.0283    0.31057  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
########Compare to null model 
#Difference in Deviance
with(ANlog3,null.deviance - deviance)
## [1] 15.56602
#Degrees of freedom for the difference between two models
with(ANlog3,df.null - df.residual)
## [1] 9
#p-value
with(ANlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.07651624
#Pseudo R-Squared
nagelkerke(ANlog3)
## $Models
##                                                                                                 
## Model: "glm, PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                                                
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0322590
## Cox and Snell (ML)                  0.0239915
## Nagelkerke (Cragg and Uhler)        0.0453572
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -9      -7.783 15.566 0.076516
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(ANlog1,ANlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ FluencyWord + WRATtotal
## Model 2: PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       638     481.02                       
## 2       631     466.97  7    14.05  0.05029 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1