Title

Estan las recodificaciones planteadas en el documento de 18 de julio Estan tratadas como variables de conteo por lo cual se hacen modelos de regresion de poisson

A su vez para entender como quedan el bewes por variable de corte anexe graficos de cajas


# sabado 20 de julio 2013
library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
options(OutDec = ",")

# sabado 20 de julio 2013 recodificacion y nueva variable bewes
library(survey)
# load('C:/Users/luisa/Desktop/montxo/licet/datos_licet_20072013.RData')
load("C:/Users/usuario/Dropbox/odontologia/maestria licet/julio_2013/datos_licet_25072013.RData")

summary(diseniopost1$variables$bewes)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0,00    0,00    5,00    8,61   16,00   47,00
plot(table(diseniopost1$variables$bewes))

plot of chunk unnamed-chunk-1

names(diseniopost1$variables[, 400:432])
##  [1] "F.12"                      "F.11"                     
##  [3] "F.21"                      "F.22"                     
##  [5] "F.23"                      "F.24"                     
##  [7] "F.25"                      "F.26"                     
##  [9] "F.27"                      "F.37"                     
## [11] "F.36"                      "F.35"                     
## [13] "F.34"                      "F.33"                     
## [15] "F.32"                      "F.31"                     
## [17] "F.41"                      "F.42"                     
## [19] "F.43"                      "F.44"                     
## [21] "F.45"                      "F.46"                     
## [23] "F.47"                      "IFT"                      
## [25] "categor.rec"               "prebewe.rec"              
## [27] "GolosinasB"                "erodentina.rec"           
## [29] "riesgoerosion.rec"         "Frecuencia.cepillado.rec2"
## [31] "Frecuencia.cepillado.rec1" "bewes"                    
## [33] "Sexo.rec"


library(car)
## Loading required package: MASS
## Loading required package: nnet


modelo6.poi <- svyglm(bewes ~ Sexo.rec, diseniopost1, family = quasipoisson())
summary(modelo6.poi)
## 
## Call:
## svyglm(formula = bewes ~ Sexo.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2,1484     0,1306   16,44   <2e-16 ***
## Sexo.rec2-M   0,0598     0,0429    1,39     0,17    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 12)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ Sexo.rec, diseniopost1, horizontal = TRUE, main = "Sexo")

plot of chunk unnamed-chunk-1


#
# modelo7.poi<-svyglm(bewes~Nivel.Socieconomico.rec,diseniopost1,familyboxplot(bewes~Nivel.Educativo.de.la.Madre1.rec,data=diseniopost1$variables)
# quasipoisson())
# svyboxplot(bewes~Nivel.Socieconomico.rec,diseniopost1,horizontal=TRUE,main='Nivel
# Socioeconomico')

summary(modelo7.poi)
## 
## Call:
## svyglm(formula = bewes ~ Nivel.Socieconomico.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      2,2076     0,1289   17,13   <2e-16 ***
## Nivel.Socieconomico.rec2-MEDIO   0,0996     0,1033    0,96    0,341    
## Nivel.Socieconomico.rec3-ALTO   -0,3675     0,1658   -2,22    0,033 *  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,65)
## 
## Number of Fisher Scoring iterations: 6

modelo8.poi <- svyglm(bewes ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1, 
    family = quasipoisson())

summary(modelo8.poi)
## 
## Call:
## svyglm(formula = bewes ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                          Estimate Std. Error t value
## (Intercept)                               2,17681    0,22536    9,66
## Nivel.Educativo.de.la.Madre1.rec2-Basic  -0,11982    0,20244   -0,59
## Nivel.Educativo.de.la.Madre1.rec3-Medium  0,26092    0,29151    0,90
## Nivel.Educativo.de.la.Madre1.rec4-High    0,00648    0,26520    0,02
##                                          Pr(>|t|)    
## (Intercept)                               1,6e-11 ***
## Nivel.Educativo.de.la.Madre1.rec2-Basic      0,56    
## Nivel.Educativo.de.la.Madre1.rec3-Medium     0,38    
## Nivel.Educativo.de.la.Madre1.rec4-High       0,98    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,54)
## 
## Number of Fisher Scoring iterations: 6
boxplot(bewes ~ Nivel.Educativo.de.la.Madre1.rec, data = diseniopost1$variables, 
    horizontal = TRUE)

plot of chunk unnamed-chunk-1


svyboxplot(bewes ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1, horizontal = TRUE, 
    main = "Nivel educativo de la madre")

plot of chunk unnamed-chunk-1


modelo9.poi <- svyglm(bewes ~ Tipo.de.Escuela.rec, diseniopost1, family = quasipoisson())
summary(modelo9.poi)
## 
## Call:
## svyglm(formula = bewes ~ Tipo.de.Escuela.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    2,2279     0,0877   25,41   <2e-16 ***
## Tipo.de.Escuela.rec2-Private  -0,0662     0,1892   -0,35     0,73    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 12,04)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ Tipo.de.Escuela.rec, diseniopost1, horizontal = TRUE, main = "Tipo de Escuela")

plot of chunk unnamed-chunk-1



modelo12.poi <- svyglm(bewes ~ FrCepDenti.rec, diseniopost1, family = quasipoisson())
summary(modelo12.poi)
## 
## Call:
## svyglm(formula = bewes ~ FrCepDenti.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             1,986      0,146   13,57  6,1e-16
## FrCepDenti.rec2- 2 veces al dia         0,174      0,181    0,96     0,34
## FrCepDenti.rec3-3 o mas veces al dia    0,285      0,236    1,21     0,23
##                                         
## (Intercept)                          ***
## FrCepDenti.rec2- 2 veces al dia         
## FrCepDenti.rec3-3 o mas veces al dia    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,47)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ FrCepDenti.rec, diseniopost1, horizontal = TRUE, main = "Frecuencia cepillado")

plot of chunk unnamed-chunk-1





modelo13.poi <- svyglm(bewes ~ UsoDentifrico3.rec, diseniopost1, family = quasipoisson())

summary(modelo13.poi)
## 
## Call:
## svyglm(formula = bewes ~ UsoDentifrico3.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2,191      0,123   17,85   <2e-16 ***
## UsoDentifrico3.rec2-No   -1,077      0,430   -2,51    0,017 *  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,89)
## 
## Number of Fisher Scoring iterations: 6

svyboxplot(bewes ~ UsoDentifrico3.rec, diseniopost1, horizontal = TRUE, main = "Uso de Dentifrico")

plot of chunk unnamed-chunk-1


modelo11.poi <- svyglm(bewes ~ Consitencia_Cepillo.rec, diseniopost1, family = quasipoisson())

summary(modelo11.poi)
## 
## Call:
## svyglm(formula = bewes ~ Consitencia_Cepillo.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                2,1962     0,1420   15,46   <2e-16 ***
## Consitencia_Cepillo.rec2   0,0678     0,1415    0,48     0,64    
## Consitencia_Cepillo.rec3   0,0308     0,1248    0,25     0,81    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 9,905)
## 
## Number of Fisher Scoring iterations: 6

svyboxplot(bewes ~ Consitencia_Cepillo.rec, diseniopost1, horizontal = TRUE, 
    main = "Consistencia de Cepillo")

plot of chunk unnamed-chunk-1



modelo20.poi <- svyglm(bewes ~ IGS.rec, diseniopost1, family = quasipoisson())
summary(modelo20.poi)
## 
## Call:
## svyglm(formula = bewes ~ IGS.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    2,1082     0,1484   14,21   <2e-16 ***
## IGS.rec2-De 45 a 60            0,0222     0,2104    0,11     0,92    
## IGS.rec3 -Menos o igual a 45   0,0856     0,1662    0,52     0,61    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,96)
## 
## Number of Fisher Scoring iterations: 6

svyboxplot(bewes ~ IGS.rec, diseniopost1, horizontal = TRUE, main = "Gingivitis")

plot of chunk unnamed-chunk-1



modelo15.poi <- svyglm(bewes ~ RefrColalight.rec, diseniopost1, family = quasipoisson())
summary(modelo15.poi)
## 
## Call:
## svyglm(formula = bewes ~ RefrColalight.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                            2,2038     0,1238   17,81   <2e-16
## RefrColalight.rec3-Nunca o raramente  -0,0379     0,1078   -0,35     0,73
## RefrColalight.recMas de 3 veces       -0,1404     0,2205   -0,64     0,53
##                                         
## (Intercept)                          ***
## RefrColalight.rec3-Nunca o raramente    
## RefrColalight.recMas de 3 veces         
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,86)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ RefrColalight.rec, diseniopost1, horizontal = TRUE, main = "Refrescos light")

plot of chunk unnamed-chunk-1



modelo21.poi <- svyglm(bewes ~ JugFrutas.rec, diseniopost1, family = quasipoisson())
summary(modelo21.poi)
## 
## Call:
## svyglm(formula = bewes ~ JugFrutas.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                          2,1455     0,1280   16,77  < 2e-16
## JugFrutas.rec3-Nunca o raramente    -0,0364     0,1621   -0,22  0,82373
## JugFrutas.recMas de 3 veces al dia   0,2220     0,0614    3,61  0,00089
##                                       
## (Intercept)                        ***
## JugFrutas.rec3-Nunca o raramente      
## JugFrutas.recMas de 3 veces al dia ***
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,76)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ JugFrutas.rec, diseniopost1, horizontal = TRUE, main = "Jugos de Fruta")

plot of chunk unnamed-chunk-1



modelo22.poi <- svyglm(bewes ~ Bebidas_energizantes.rec, diseniopost1, family = quasipoisson())
summary(modelo22.poi)
## 
## Call:
## svyglm(formula = bewes ~ Bebidas_energizantes.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                               Estimate Std. Error t value
## (Intercept)                                     2,2015     0,1484   14,84
## Bebidas_energizantes.rec2-Todos los dias       -0,0341     0,1179   -0,29
## Bebidas_energizantes.recMas de 3 veces al dia  -0,7995     0,5792   -1,38
##                                               Pr(>|t|)    
## (Intercept)                                     <2e-16 ***
## Bebidas_energizantes.rec2-Todos los dias          0,77    
## Bebidas_energizantes.recMas de 3 veces al dia     0,18    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,54)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ Bebidas_energizantes.rec, diseniopost1, horizontal = TRUE, 
    main = "Bebidas Energizantes")

plot of chunk unnamed-chunk-1



modelo23.poi <- svyglm(bewes ~ Yogurt.rec, diseniopost1, family = quasipoisson())
summary(modelo23.poi)
## 
## Call:
## svyglm(formula = bewes ~ Yogurt.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      2,358      0,184   12,82  3,5e-15 ***
## Yogurt.rec2-Todos los dias      -0,185      0,259   -0,71     0,48    
## Yogurt.rec3-Nunca o raramente   -0,164      0,210   -0,78     0,44    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,76)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ Yogurt.rec, diseniopost1, horizontal = TRUE, main = "Consumo de Yogurt")

plot of chunk unnamed-chunk-1


modelo24.poi <- svyglm(bewes ~ Bruxismo.rec, diseniopost1, family = quasipoisson())

summary(modelo24.poi)
## 
## Call:
## svyglm(formula = bewes ~ Bruxismo.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2,17464    0,13256   16,40   <2e-16 ***
## Bruxismo.rec2-Yes -0,00752    0,09595   -0,08     0,94    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,8)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ Bruxismo.rec, diseniopost1, horizontal = TRUE, main = "Presencia de Bruxismo")

plot of chunk unnamed-chunk-1


modelo25.poi <- svyglm(bewes ~ bedeportediario.rec, diseniopost1, family = quasipoisson())

summary(modelo25.poi)
## 
## Call:
## svyglm(formula = bewes ~ bedeportediario.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     2,2146     0,1128   19,63   <2e-16 ***
## bedeportediario.rec2-Gatorade   0,0771     0,1972    0,39     0,70    
## bedeportediario.rec3-other      0,1364     0,1348    1,01     0,32    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 10,07)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ bedeportediario.rec, diseniopost1, horizontal = TRUE, main = "DRINK OF THE END OF SPORTS")

plot of chunk unnamed-chunk-1


modelo26.poi <- svyglm(bewes ~ Natac2vec.rec, diseniopost1, family = quasipoisson())

summary(modelo26.poi)
## 
## Call:
## svyglm(formula = bewes ~ Natac2vec.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          2,1979     0,1314   16,73   <2e-16 ***
## Natac2vec.rec2-Yes   0,0628     0,0712    0,88     0,38    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 10,39)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ Natac2vec.rec, diseniopost1, horizontal = TRUE, main = "Natacion en la semana")

plot of chunk unnamed-chunk-1


modelo27.poi <- svyglm(bewes ~ BuchTragar.rec, diseniopost1, family = quasipoisson())

summary(modelo27.poi)
## 
## Call:
## svyglm(formula = bewes ~ BuchTragar.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            2,173      0,124   17,54   <2e-16 ***
## BuchTragar.rec2-Yes    0,274      0,112    2,46    0,019 *  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 10,08)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ BuchTragar.rec, diseniopost1, horizontal = TRUE, main = "BUches antes de tragar")

plot of chunk unnamed-chunk-1




modelo28.poi <- svyglm(bewes ~ FormBeber.rec, diseniopost1, family = quasipoisson())

summary(modelo28.poi)
## 
## Call:
## svyglm(formula = bewes ~ FormBeber.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   2,187      0,143   15,24   <2e-16 ***
## FormBeber.rec2-con sorbete    0,149      0,085    1,75    0,088 .  
## FormBeber.rec3-botella       -0,107      0,201   -0,53    0,598    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,87)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ FormBeber.rec, diseniopost1, horizontal = TRUE, main = "Forma de Beber")

plot of chunk unnamed-chunk-1



modelo29.poi <- svyglm(bewes ~ AlterGastrica.rec, diseniopost1, family = quasipoisson())

summary(modelo29.poi)
## 
## Call:
## svyglm(formula = bewes ~ AlterGastrica.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2,195      0,129   17,02   <2e-16 ***
## AlterGastrica.rec2-Yes   -0,243      0,227   -1,07     0,29    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,76)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ AlterGastrica.rec, diseniopost1, horizontal = TRUE, main = "Alteraciones Gastricas")

plot of chunk unnamed-chunk-1



modelo30.poi <- svyglm(bewes ~ MedResp.rec, diseniopost1, family = quasipoisson())

summary(modelo30.poi)
## 
## Call:
## svyglm(formula = bewes ~ MedResp.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2,1793     0,1258   17,33   <2e-16 ***
## MedResp.rec2-Yes   0,0421     0,1527    0,28     0,78    
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 11,77)
## 
## Number of Fisher Scoring iterations: 6
svyboxplot(bewes ~ FormBeber.rec, diseniopost1, horizontal = TRUE, main = "Desordenes Respiratorios")

plot of chunk unnamed-chunk-1