Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)
library(rcompanion)
library(car)

Digit Span Forward - Psychological Aggression

Model 1

DSFlog1 <- glm(PsychAggress ~ DigitSpanFwd + WRATtotal, data=Allvars,family = "binomial")
summary(DSFlog1)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanFwd + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2313   0.4682   0.5210   0.5643   0.7291  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.78702    0.64531   1.220    0.223
## DigitSpanFwd  0.07846    0.05929   1.323    0.186
## WRATtotal     0.01168    0.01645   0.710    0.478
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 501.43  on 638  degrees of freedom
## AIC: 507.43
## 
## Number of Fisher Scoring iterations: 4
confint(DSFlog1)
##                    2.5 %     97.5 %
## (Intercept)  -0.44898892 2.08935880
## DigitSpanFwd -0.03553314 0.19736569
## WRATtotal    -0.02121329 0.04346352
exp(cbind(OR = coef(DSFlog1), confint(DSFlog1)))
##                    OR     2.5 %   97.5 %
## (Intercept)  2.196839 0.6382732 8.079733
## DigitSpanFwd 1.081621 0.9650907 1.218189
## WRATtotal    1.011748 0.9790101 1.044422
#Wald chi-square Test
Anova(DSFlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##              Df  Chisq Pr(>Chisq)
## DigitSpanFwd  1 1.7511     0.1857
## WRATtotal     1 0.5038     0.4778
########Compare to null model 
#Difference in Deviance
with(DSFlog1,null.deviance - deviance)
## [1] 3.968932
#Degrees of freedom for the difference between two models
with(DSFlog1,df.null - df.residual)
## [1] 2
#p-value
with(DSFlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.137454
#Pseudo R-Squared
nagelkerke(DSFlog1)
## $Models
##                                                                         
## Model: "glm, PsychAggress ~ DigitSpanFwd + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                       
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00785303
## Cox and Snell (ML)                 0.00617265
## Nagelkerke (Cragg and Uhler)       0.01131650
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2     -1.9845 3.9689 0.13745
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

DSFlog3 <- glm(PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2630   0.4174   0.4864   0.5671   0.8936  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                       2.05209    1.11257   1.844   0.0651 .
## DigitSpanFwd                      0.04840    0.09789   0.494   0.6210  
## SexMen                           -0.95692    0.94536  -1.012   0.3114  
## PovStatBelow                      0.19631    1.31460   0.149   0.8813  
## Age                              -0.02016    0.01320  -1.527   0.1267  
## WRATtotal                         0.01412    0.01657   0.852   0.3939  
## DigitSpanFwd:SexMen               0.05684    0.12434   0.457   0.6476  
## DigitSpanFwd:PovStatBelow        -0.01234    0.17920  -0.069   0.9451  
## SexMen:PovStatBelow               0.20818    1.84272   0.113   0.9100  
## DigitSpanFwd:SexMen:PovStatBelow  0.02781    0.25559   0.109   0.9134  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 491.88  on 631  degrees of freedom
## AIC: 511.88
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog3)
##                                        2.5 %      97.5 %
## (Intercept)                      -0.09264104 4.279188872
## DigitSpanFwd                     -0.13709894 0.248989556
## SexMen                           -2.82517597 0.891305947
## PovStatBelow                     -2.37156876 2.815163307
## Age                              -0.04624726 0.005614341
## WRATtotal                        -0.01894722 0.046169635
## DigitSpanFwd:SexMen              -0.18968591 0.299953467
## DigitSpanFwd:PovStatBelow        -0.35703285 0.351928834
## SexMen:PovStatBelow              -3.43757513 3.815705044
## DigitSpanFwd:SexMen:PovStatBelow -0.47184254 0.537277577
exp(cbind(OR = coef(DSFlog3), confint(DSFlog3)))
##                                         OR      2.5 %    97.5 %
## (Intercept)                      7.7841672 0.91152064 72.181868
## DigitSpanFwd                     1.0495926 0.87188396  1.282729
## SexMen                           0.3840725 0.05929822  2.438312
## PovStatBelow                     1.2169073 0.09333419 16.695902
## Age                              0.9800401 0.95480585  1.005630
## WRATtotal                        1.0142231 0.98123115  1.047252
## DigitSpanFwd:SexMen              1.0584906 0.82721892  1.349796
## DigitSpanFwd:PovStatBelow        0.9877360 0.69974951  1.421807
## SexMen:PovStatBelow              1.2314393 0.03214253 45.408760
## DigitSpanFwd:SexMen:PovStatBelow 1.0281966 0.62385173  1.711342
#Wald chi-square Test
Anova(DSFlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##                          Df  Chisq Pr(>Chisq)  
## DigitSpanFwd              1 1.7222     0.1894  
## Sex                       1 3.4831     0.0620 .
## PovStat                   1 1.3259     0.2495  
## Age                       1 2.3326     0.1267  
## WRATtotal                 1 0.7267     0.3939  
## DigitSpanFwd:Sex          1 0.3398     0.5600  
## DigitSpanFwd:PovStat      1 0.0001     0.9917  
## Sex:PovStat               1 0.5522     0.4574  
## DigitSpanFwd:Sex:PovStat  1 0.0118     0.9134  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
########Compare to null model 
#Difference in Deviance
with(DSFlog3,null.deviance - deviance)
## [1] 13.52276
#Degrees of freedom for the difference between two models
with(DSFlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSFlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1403431
#Pseudo R-Squared
nagelkerke(DSFlog3)
## $Models
##                                                                                                   
## Model: "glm, PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                                                 
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0267565
## Cox and Snell (ML)                  0.0208754
## Nagelkerke (Cragg and Uhler)        0.0382715
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -9     -6.7614 13.523 0.14034
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(DSFlog1,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanFwd + WRATtotal
## Model 2: PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       638     501.43                     
## 2       631     491.88  7   9.5538   0.2153

Digit Span Forward - Physical Assault

Model 1

DSFlog1 <- glm(PhysAssault ~ DigitSpanFwd + WRATtotal, data=Allvars,family = "binomial")
summary(DSFlog1)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanFwd + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5618  -0.5322  -0.5148  -0.4907   2.1702  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.532311   0.732701  -3.456 0.000548 ***
## DigitSpanFwd  0.001784   0.058017   0.031 0.975469    
## WRATtotal     0.013030   0.018186   0.716 0.473706    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 481.85  on 638  degrees of freedom
## AIC: 487.85
## 
## Number of Fisher Scoring iterations: 4
confint(DSFlog1)
##                    2.5 %      97.5 %
## (Intercept)  -4.03059046 -1.15077404
## DigitSpanFwd -0.11393207  0.11399047
## WRATtotal    -0.02173272  0.04970933
exp(cbind(OR = coef(DSFlog1), confint(DSFlog1)))
##                      OR      2.5 %    97.5 %
## (Intercept)  0.07947516 0.01776384 0.3163918
## DigitSpanFwd 1.00178564 0.89231857 1.1207414
## WRATtotal    1.01311505 0.97850173 1.0509656
#Wald chi-square Test
Anova(DSFlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##              Df  Chisq Pr(>Chisq)
## DigitSpanFwd  1 0.0009     0.9755
## WRATtotal     1 0.5133     0.4737
########Compare to null model 
#Difference in Deviance
with(DSFlog1,null.deviance - deviance)
## [1] 0.6824734
#Degrees of freedom for the difference between two models
with(DSFlog1,df.null - df.residual)
## [1] 2
#p-value
with(DSFlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.7108906
#Pseudo R-Squared
nagelkerke(DSFlog1)
## $Models
##                                                                        
## Model: "glm, PhysAssault ~ DigitSpanFwd + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                       
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00141436
## Cox and Snell (ML)                 0.00106413
## Nagelkerke (Cragg and Uhler)       0.00201180
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff   Chisq p.value
##       -2    -0.34124 0.68247 0.71089
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

DSFlog3 <- glm(PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8189  -0.5530  -0.4756  -0.3929   2.4095  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      -1.19141    1.18123  -1.009   0.3132  
## DigitSpanFwd                     -0.01788    0.09490  -0.188   0.8505  
## SexMen                           -0.47145    1.09257  -0.432   0.6661  
## PovStatBelow                      0.30840    1.14433   0.270   0.7875  
## Age                              -0.03343    0.01381  -2.421   0.0155 *
## WRATtotal                         0.01844    0.01896   0.973   0.3306  
## DigitSpanFwd:SexMen               0.03636    0.13301   0.273   0.7846  
## DigitSpanFwd:PovStatBelow         0.01956    0.14872   0.131   0.8954  
## SexMen:PovStatBelow               0.55778    1.74829   0.319   0.7497  
## DigitSpanFwd:SexMen:PovStatBelow -0.06336    0.22405  -0.283   0.7773  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 469.30  on 631  degrees of freedom
## AIC: 489.3
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog3)
##                                        2.5 %       97.5 %
## (Intercept)                      -3.55771445  1.082542539
## DigitSpanFwd                     -0.21071775  0.163745918
## SexMen                           -2.63659095  1.663594559
## PovStatBelow                     -1.95436295  2.551997385
## Age                              -0.06093180 -0.006678362
## WRATtotal                        -0.01776098  0.056701218
## DigitSpanFwd:SexMen              -0.22512922  0.298520850
## DigitSpanFwd:PovStatBelow        -0.27523533  0.311318253
## SexMen:PovStatBelow              -2.87426110  3.999016174
## DigitSpanFwd:SexMen:PovStatBelow -0.50694634  0.374844062
#Wald chi-square Test
Anova(DSFlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##                          Df  Chisq Pr(>Chisq)  
## DigitSpanFwd              1 0.0039    0.95044  
## Sex                       1 0.4005    0.52682  
## PovStat                   1 3.6971    0.05451 .
## Age                       1 5.8628    0.01546 *
## WRATtotal                 1 0.9466    0.33058  
## DigitSpanFwd:Sex          1 0.0173    0.89542  
## DigitSpanFwd:PovStat      1 0.0058    0.93944  
## Sex:PovStat               1 0.0281    0.86690  
## DigitSpanFwd:Sex:PovStat  1 0.0800    0.77734  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
########Compare to null model 
#Difference in Deviance
with(DSFlog3,null.deviance - deviance)
## [1] 13.23718
#Degrees of freedom for the difference between two models
with(DSFlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSFlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1521644
#Pseudo R-Squared
nagelkerke(DSFlog3)
## $Models
##                                                                                                  
## Model: "glm, PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                                                 
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0274327
## Cox and Snell (ML)                  0.0204391
## Nagelkerke (Cragg and Uhler)        0.0386412
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -9     -6.6186 13.237 0.15216
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(DSFlog1,DSFlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanFwd + WRATtotal
## Model 2: PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       638     481.85                       
## 2       631     469.30  7   12.555  0.08373 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Digit Span Backward - Psychological Aggression

Model 1

DSBlog1 <- glm(PsychAggress ~ DigitSpanBck + WRATtotal, data=Allvars,family = "binomial")
summary(DSBlog1)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanBck + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1328   0.4853   0.5220   0.5539   0.7214  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.93837    0.63316   1.482    0.138
## DigitSpanBck  0.03600    0.06181   0.582    0.560
## WRATtotal     0.01668    0.01691   0.987    0.324
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 502.89  on 638  degrees of freedom
## AIC: 508.89
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog1)
##                    2.5 %     97.5 %
## (Intercept)  -0.26947081 2.22135098
## DigitSpanBck -0.08306945 0.15965500
## WRATtotal    -0.01699755 0.04947187
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                    OR     2.5 %   97.5 %
## (Intercept)  2.555822 0.7637836 9.219778
## DigitSpanBck 1.036652 0.9202872 1.173106
## WRATtotal    1.016825 0.9831461 1.050716
#Wald chi-square Test
Anova(DSBlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##              Df  Chisq Pr(>Chisq)
## DigitSpanBck  1 0.3391     0.5603
## WRATtotal     1 0.9735     0.3238
########Compare to null model 
#Difference in Deviance
with(DSBlog1,null.deviance - deviance)
## [1] 2.512546
#Degrees of freedom for the difference between two models
with(DSBlog1,df.null - df.residual)
## [1] 2
#p-value
with(DSBlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2847132
#Pseudo R-Squared
nagelkerke(DSBlog1)
## $Models
##                                                                         
## Model: "glm, PsychAggress ~ DigitSpanBck + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                       
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00497139
## Cox and Snell (ML)                 0.00391206
## Nagelkerke (Cragg and Uhler)       0.00717210
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2     -1.2563 2.5125 0.28471
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

DSBlog3 <- glm(PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3576   0.3941   0.4862   0.5675   0.9101  
## 
## Coefficients:
##                                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                       1.86140    1.04549   1.780   0.0750 .
## DigitSpanBck                      0.09323    0.11541   0.808   0.4192  
## SexMen                           -0.62912    0.78860  -0.798   0.4250  
## PovStatBelow                      1.65113    1.19085   1.387   0.1656  
## Age                              -0.02285    0.01323  -1.728   0.0841 .
## WRATtotal                         0.01775    0.01714   1.036   0.3003  
## DigitSpanBck:SexMen               0.01376    0.13382   0.103   0.9181  
## DigitSpanBck:PovStatBelow        -0.27451    0.19329  -1.420   0.1555  
## SexMen:PovStatBelow               0.18041    1.54837   0.117   0.9072  
## DigitSpanBck:SexMen:PovStatBelow  0.03102    0.24940   0.124   0.9010  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40  on 640  degrees of freedom
## Residual deviance: 489.29  on 631  degrees of freedom
## AIC: 509.29
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog3)
##                                        2.5 %     97.5 %
## (Intercept)                      -0.15637002 3.95271949
## DigitSpanBck                     -0.12406374 0.32908387
## SexMen                           -2.18681354 0.91147349
## PovStatBelow                     -0.63382657 4.07184741
## Age                              -0.04900142 0.00297188
## WRATtotal                        -0.01629415 0.05105948
## DigitSpanBck:SexMen              -0.25325179 0.27307703
## DigitSpanBck:PovStatBelow        -0.65478254 0.10995568
## SexMen:PovStatBelow              -2.88490444 3.21551659
## DigitSpanBck:SexMen:PovStatBelow -0.45930083 0.52358557
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                         OR      2.5 %    97.5 %
## (Intercept)                      6.4327376 0.85524267 52.076797
## DigitSpanBck                     1.0977113 0.88332354  1.389694
## SexMen                           0.5330596 0.11227394  2.487986
## PovStatBelow                     5.2128734 0.53055769 58.665242
## Age                              0.9774056 0.95217978  1.002976
## WRATtotal                        1.0179052 0.98383788  1.052385
## DigitSpanBck:SexMen              1.0138573 0.77627240  1.314001
## DigitSpanBck:PovStatBelow        0.7599464 0.51955503  1.116229
## SexMen:PovStatBelow              1.1977140 0.05586013 24.916160
## DigitSpanBck:SexMen:PovStatBelow 1.0315050 0.63172517  1.688070
Anova(DSBlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##                          Df  Chisq Pr(>Chisq)  
## DigitSpanBck              1 0.2200    0.63901  
## Sex                       1 3.6005    0.05776 .
## PovStat                   1 0.8586    0.35413  
## Age                       1 2.9847    0.08406 .
## WRATtotal                 1 1.0726    0.30035  
## DigitSpanBck:Sex          1 0.0404    0.84061  
## DigitSpanBck:PovStat      1 4.3546    0.03691 *
## Sex:PovStat               1 0.4509    0.50189  
## DigitSpanBck:Sex:PovStat  1 0.0155    0.90102  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
########Compare to null model 
#Difference in Deviance
with(DSBlog3,null.deviance - deviance)
## [1] 16.11477
#Degrees of freedom for the difference between two models
with(DSBlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSBlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.06452314
#Pseudo R-Squared
nagelkerke(DSBlog3)
## $Models
##                                                                                                   
## Model: "glm, PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PsychAggress ~ 1, binomial, Allvars"                                                 
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0318851
## Cox and Snell (ML)                  0.0248267
## Nagelkerke (Cragg and Uhler)        0.0455156
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -9     -8.0574 16.115 0.064523
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(DSBlog1,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ DigitSpanBck + WRATtotal
## Model 2: PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       638     502.89                       
## 2       631     489.29  7   13.602  0.05873 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Digit Span Backward - Physical Assault

Model 1

DSBlog1 <- glm(PhysAssault ~ DigitSpanBck + WRATtotal, data=Allvars,family = "binomial")
summary(DSBlog1)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanBck + WRATtotal, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6479  -0.5320  -0.5020  -0.4776   2.2345  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.480502   0.722952  -3.431 0.000601 ***
## DigitSpanBck  0.064338   0.059616   1.079 0.280490    
## WRATtotal     0.003327   0.018664   0.178 0.858527    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 480.70  on 638  degrees of freedom
## AIC: 486.7
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog1)
##                    2.5 %      97.5 %
## (Intercept)  -3.96354620 -1.12189948
## DigitSpanBck -0.05415689  0.18008573
## WRATtotal    -0.03250252  0.04082243
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                      OR      2.5 %    97.5 %
## (Intercept)  0.08370116 0.01899563 0.3256606
## DigitSpanBck 1.06645295 0.94728347 1.1973200
## WRATtotal    1.00333240 0.96802001 1.0416671
Anova(DSBlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##              Df  Chisq Pr(>Chisq)
## DigitSpanBck  1 1.1647     0.2805
## WRATtotal     1 0.0318     0.8585
########Compare to null model 
#Difference in Deviance
with(DSBlog1,null.deviance - deviance)
## [1] 1.829701
#Degrees of freedom for the difference between two models
with(DSBlog1,df.null - df.residual)
## [1] 2
#p-value
with(DSBlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.4005766
#Pseudo R-Squared
nagelkerke(DSBlog1)
## $Models
##                                                                        
## Model: "glm, PhysAssault ~ DigitSpanBck + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                       
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00379187
## Cox and Snell (ML)                 0.00285038
## Nagelkerke (Cragg and Uhler)       0.00538879
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2    -0.91485 1.8297 0.40058
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

DSBlog3 <- glm(PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8330  -0.5503  -0.4685  -0.3884   2.4253  
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                      -1.255613   1.120611  -1.120   0.2625  
## DigitSpanBck                      0.044520   0.107315   0.415   0.6782  
## SexMen                           -0.455390   0.908308  -0.501   0.6161  
## PovStatBelow                      0.408942   1.027509   0.398   0.6906  
## Age                              -0.031862   0.013778  -2.313   0.0207 *
## WRATtotal                         0.009189   0.019285   0.476   0.6337  
## DigitSpanBck:SexMen               0.038519   0.133091   0.289   0.7723  
## DigitSpanBck:PovStatBelow         0.008996   0.165178   0.054   0.9566  
## SexMen:PovStatBelow               0.440727   1.437951   0.306   0.7592  
## DigitSpanBck:SexMen:PovStatBelow -0.056578   0.225189  -0.251   0.8016  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53  on 640  degrees of freedom
## Residual deviance: 468.32  on 631  degrees of freedom
## AIC: 488.32
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog3)
##                                        2.5 %       97.5 %
## (Intercept)                      -3.50061722  0.901710583
## DigitSpanBck                     -0.17306222  0.249958353
## SexMen                           -2.25539642  1.319990640
## PovStatBelow                     -1.63003035  2.417495430
## Age                              -0.05931304 -0.005176632
## WRATtotal                        -0.02780734  0.047973668
## DigitSpanBck:SexMen              -0.22130482  0.302664130
## DigitSpanBck:PovStatBelow        -0.31741438  0.334113806
## SexMen:PovStatBelow              -2.38215259  3.271157548
## DigitSpanBck:SexMen:PovStatBelow -0.50186032  0.384406408
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                         OR      2.5 %     97.5 %
## (Intercept)                      0.2849011 0.03017875  2.4638141
## DigitSpanBck                     1.0455263 0.84108528  1.2839719
## SexMen                           0.6342003 0.10483198  3.7433863
## PovStatBelow                     1.5052248 0.19592363 11.2177285
## Age                              0.9686402 0.94241171  0.9948367
## WRATtotal                        1.0092314 0.97257573  1.0491430
## DigitSpanBck:SexMen              1.0392708 0.80147234  1.3534598
## DigitSpanBck:PovStatBelow        1.0090362 0.72802901  1.3967021
## SexMen:PovStatBelow              1.5538360 0.09235157 26.3418136
## DigitSpanBck:SexMen:PovStatBelow 0.9449929 0.60540337  1.4687422
Anova(DSBlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##                          Df  Chisq Pr(>Chisq)  
## DigitSpanBck              1 0.9600    0.32719  
## Sex                       1 0.4929    0.48263  
## PovStat                   1 3.9229    0.04763 *
## Age                       1 5.3479    0.02075 *
## WRATtotal                 1 0.2270    0.63373  
## DigitSpanBck:Sex          1 0.0305    0.86132  
## DigitSpanBck:PovStat      1 0.0363    0.84884  
## Sex:PovStat               1 0.0412    0.83915  
## DigitSpanBck:Sex:PovStat  1 0.0631    0.80162  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
########Compare to null model 
#Difference in Deviance
with(DSBlog3,null.deviance - deviance)
## [1] 14.20855
#Degrees of freedom for the difference between two models
with(DSBlog3,df.null - df.residual)
## [1] 9
#p-value
with(DSBlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1150977
#Pseudo R-Squared
nagelkerke(DSBlog3)
## $Models
##                                                                                                  
## Model: "glm, PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, binomial, Allvars"
## Null:  "glm, PhysAssault ~ 1, binomial, Allvars"                                                 
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0294458
## Cox and Snell (ML)                  0.0219224
## Nagelkerke (Cragg and Uhler)        0.0414454
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -9     -7.1043 14.209  0.1151
## 
## $Number.of.observations
##           
## Model: 641
## Null:  641
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Compare Models 1 & 3

anova(DSBlog1,DSBlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ DigitSpanBck + WRATtotal
## Model 2: PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       638     480.70                       
## 2       631     468.32  7   12.379  0.08877 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1