1 Libraries

library(meta)
library(metasens)
library(readxl)
library(metafor)
library(DescTools)
library(psych)
library(tidyverse)
library(metaviz)
library(table1)
library(stargazer)

2 Data

#download data and subset it
data_full <- read_xlsx("/Users/carolinaferreiraatuesta/Documents/H-LAND/Meta Analysis/data_feb.xlsx", sheet= "representatives_global_memory")
data <- subset(data_full, table1 ==1, exclude !=0 ) 

3 Tables 1

data_table1 <- subset(data_full, table1 == 1, exclude != 0)
#labels
label(data_table1$memory_composite) <- "Memory"
label(data_table1$global_composite) <- 'Global'
label(data_table1$author) <- 'Author'
label(data_table1$year) <- 'Year '
label(data_table1$amyloid) <- 'Amyloid'
label(data_table1$tau) <- 'Tau'
label(data_table1$interaction) <- 'Interaction'
label(data_table1$addition) <- 'Addition'
label(data_table1$selected_tau_amyloid) <- 'Selected ligand'
label(data_table1$ligand) <- 'Ligand'
label(data_table1$ligand_other) <- 'Ligand other'
label(data_table1$csf) <- 'CSF'
label(data_table1$csf_other) <- 'CSF other'
label(data_table1$serum) <- 'Serum'
label(data_table1$type_study) <- 'Type study'
label(data_table1$neurodeg) <- 'Neurodegeneration'
label(data_table1$method) <- 'Method'
label(data_table1$controlled) <- 'Controlled'
label(data_table1$cov_time) <- 'Time'
label(data_table1$sex) <- 'Sex'
label(data_table1$education) <- 'Education'
label(data_table1$apoe) <- 'Apoe'
label(data_table1$covaratiate_others) <- 'Other cov'
label(data_table1$cohort_database) <- 'Cohort'
label(data_table1$age_type) <- 'Age type'
#label(data_table1$age) <- 'Age'
#label(data_table1$age_variance) <- 'Age variance'
#abel(data_table1$total_nc) <- 'Total N'
#label(data_table1$nc_pos) <- 'N positive'
#label(data_table1$nc_neg) <- 'N negative'
label(data_table1$roi_lateral_temporal) <- 'ROI temporal lateral'
label(data_table1$roi_entorhinal_hippocampus) <-
'ROI entorhinal or hipocampus'
label(data_table1$roi_lateral_parietal) <- 'ROI parietal lateral'
label(data_table1$roi_cingulate) <- 'ROI cingulate'
label(data_table1$roi_frontal) <- 'ROI frontal'
label(data_table1$roi_precuneus) <- 'ROI precuneus'
label(data_table1$roi_occipital) <- 'ROI occipital'
label(data_table1$suvr_dvr) <- 'SUVR/DVR'
#label(data_table1$type_cognitive) <- ''
label(data_table1$cross_long) <- 'CS or Longitudinal'
label(data_table1$all_r) <- 'R value'
label(data_table1$exclude) <- ''
label(data_table1$fisherz) <- 'Fisher z'
label(data_table1$weight) <- 'Weighted (n-3)'
label(data_table1$weight_se) <- 'Weigted SE'

#as factors

data_table1$memory_composite <-
as.factor(data_table1$memory_composite)
data_table1$global_composite <-
as.factor(data_table1$global_composite)
data_table1$amyloid <- as.factor(data_table1$amyloid)
data_table1$tau <- as.factor(data_table1$tau)
data_table1$interaction <- as.factor(data_table1$interaction)
data_table1$addition <- as.factor(data_table1$addition)
data_table1$selected_tau_amyloid <-
as.factor(data_table1$selected_tau_amyloid)
data_table1$type_study <- as.factor(data_table1$type_study)
data_table1$neurodeg <- as.factor(data_table1$neurodeg)
data_table1$sex <- as.factor(data_table1$sex)
data_table1$education <- as.factor(data_table1$education)
data_table1$apoe <- as.factor(data_table1$apoe)
data_table1$age_type <- as.factor(data_table1$age_type)
data_table1$roi_lateral_temporal <-
as.factor(data_table1$roi_lateral_temporal)
data_table1$roi_entorhinal_hippocampus <-
as.factor(data_table1$roi_entorhinal_hippocampus)
data_table1$roi_lateral_parietal <-
as.factor(data_table1$roi_lateral_parietal)
data_table1$roi_cingulate <- as.factor(data_table1$roi_cingulate)
data_table1$roi_frontal <- as.factor(data_table1$roi_frontal)
data_table1$roi_precuneus <- as.factor(data_table1$roi_precuneus)
data_table1$roi_occipital <- as.factor(data_table1$roi_occipital)
data_table1$suvr_dvr <- as.factor(data_table1$suvr_dvr)
data_table1$type_cognitive <- as.factor(data_table1$type_cognitive)
data_table1$cross_long <- as.factor(data_table1$cross_long)

3.1 Table descriptive amyloid

3.2 Table descriptive tau

3.3 Table summary included papers

newtab <-
  data.frame(
  data_table1$author,
  data_table1$year,
  data_table1$cohort_database,
  data_table1$method,
  data_table1$cross_long,
  data_table1$cov_time,
  data_table1$controlled,
  data_table1$total_nc,
  data_table1$Global_composite,
  data_table1$Memory_composite
  )
  
  names(newtab)[names(newtab) == "data_table1.author"] <- "Author"
  names(newtab)[names(newtab) == "data_table1.method"] <- "Method"
  names(newtab)[names(newtab) == "data_table1.year"] <- "Year"
  names(newtab)[names(newtab) == "data_table1.cohort_database"] <- "Cohort"
  names(newtab)[names(newtab) == "data_table1.cross_long"] <- "Type of study"
  names(newtab)[names(newtab) == "data_table1.cov_time"] <- "Controlled by time of follow-up"
  names(newtab)[names(newtab) == "data_table1.controlled"] <- "Controlled"
  names(newtab)[names(newtab) == "data_table1.total_nc"] <- "N"
  names(newtab)[names(newtab) == "data_table1.Global_composite"] <- "Global"
  names(newtab)[names(newtab) == "data_table1.Memory_composite"] <- "Memory"
  
 
  kableExtra::kbl(newtab) %>%
  kableExtra::kable_paper(bootstrap_options = "striped", full_width = F)
Author Year Cohort Method Type of study Controlled by time of follow-up Controlled N Global Memory
Gu 2012 WHICAP Ab42 C No Yes 813 NA 0.0670742
Horn MM 2018 Dallas PiB C No Yes 195 NA 0.2500000
Hoscheidt SM 2016 IMPACT ab42/ab40/ptau/ttau C No Yes 70 NA 0.0964365
Hosokawa C 2014 Osakasayama, Japan, PiB C No No 90 0.7628017 NA
Adamczuk K 2014 Leuven Flutemetamol C No Yes 56 0.2271847 NA
Adamczuk K 2014 Leuven Flutemetamol C No Yes 56 NA 0.2150714
Aizenstein HJ 2008 PITT PiB C No No 38 -0.1215034 NA
Aizenstein HJ 2008 PITT PiB C No No 34 NA -0.3791941
Pomara N 2005 Nathan Kline Ab42 L No No 34 0.4100000 NA
Radanovic M 2019 Brazil ab42/ptau181 C No Yes 54 0.2070000 NA
Radanovic M 2019 Brazil Ab42 C No Yes 54 0.2110000 NA
Radanovic M 2019 Brazil ptau181 C No Yes 54 0.2840000 NA
Rentz DM 2010 HABS PiB C No Yes 66 NA 0.0000000
Resnick SM 2010 BLSA PiB L Yes Yes 51 NA 0.0163589
Resnick SM 2010 BLSA PiB L Yes Yes 51 0.0135846 NA
Roberts RO 2018 MCSA PiB L No Yes 1492 0.0367629 NA
Roberts RO 2018 MCSA PiB L No Yes 1492 NA 0.0385758
Roberts RO 2018 MCSA PiB C No No 1492 0.2466143 NA
Roberts RO 2018 MCSA PiB C No No 1492 NA 0.1638525
Roe CM 2013 Knight ptau181 L No Yes 430 0.0548775 NA
Roe CM 2013 Knight ptau181/ab42 L No Yes 430 0.0926467 NA
Roe CM 2013 Knight ab42 L No Yes 430 0.0678207 NA
Rosenberg PB 2013 John Hopkns Florbetapir C No No 15 NA 0.1500000
Rosenberg PB 2013 John Hopkns Florbetapir C No No 15 0.1650000 NA
Sanabria A 2018 FACEHBI PiB C No Yes 200 NA 0.0000000
Schindler SE 2017 Knight Ab42 C Yes Yes 233 NA 0.0695833
Schindler SE 2017 Knight Ab42 C Yes Yes 233 0.0755000 NA
Schindler SE 2017 Knight ptau C Yes Yes 233 NA 0.0282500
Schindler SE 2017 Knight ptau C Yes Yes 233 0.0025000 NA
Schindler SE 2017 Knight ptau/ab42 C Yes Yes 233 NA 0.0950833
Schindler SE 2017 Knight ptau/ab42 C Yes Yes 233 0.0695000 NA
Schindler SE 2017 Knight Ab42 L Yes Yes 233 0.0405000 NA
Schindler SE 2017 Knight Ab42 L Yes Yes 233 NA 0.0110000
Schindler SE 2017 Knight ptau L Yes Yes 233 0.0135000 NA
Schindler SE 2017 Knight ptau L Yes Yes 233 NA 0.0175000
Schindler SE 2017 Knight ptau/ab42 L Yes Yes 233 0.0385000 NA
Schindler SE 2017 Knight ptau/ab42 L Yes Yes 233 NA 0.0210000
Sala-Llonch R 2017 Norway Ab42 C No No 89 NA -0.0524737
Sala-Llonch R 2017 Norway Ab42 C No No 89 -0.0467196 NA
Sala-Llonch R 2017 Norway Ab42 L No No 89 0.1102283 NA
Sierra-Rio A 2015 Barcelona ab42/ptau C No No 55 0.0475204 NA
Song Z 2016 DLBS Florbetapir C No No 82 NA 0.1287696
Song Z 2016 DLBS Florbetapir C No No 82 0.1225236 NA
Song Z 2015 UCSF Florbetapir C No Yes 50 NA 0.0040000
Song Z 2015 UCSF Florbetapir C No Yes 50 0.0200000 NA
Stomrud E 2010 CMRU Ab42 C No Yes 37 -0.0005000 NA
Stomrud E 2010 CMRU ptau 181 C No Yes 37 -0.0320000 NA
Stomrud E 2010 CMRU ptau 181 L No Yes 37 0.0600000 NA
Stomrud E 2010 CMRU Ab42 L No Yes 37 0.2300000 NA
Stomrud E 2010 CMRU ptau 181 C No Yes 37 NA -0.1280000
Stomrud E 2010 CMRU Ab42 C No Yes 37 NA 0.1340000
Stomrud E 2010 CMRU ptau 181 L No Yes 37 NA -0.0940000
Stomrud E 2010 CMRU Ab42 L No Yes 37 NA 0.4370000
Timmers T 2019 SCIENCe Florbetapir C No Yes 107 0.7456244 NA
Timmers T 2019 SCIENCe Florbetapir C No Yes 107 NA 0.6711077
Timmers T 2019 SCIENCe Florbetapir L No Yes 107 0.4860464 NA
Timmers T 2019 SCIENCe Florbetapir L No Yes 107 NA 0.3085927
Storandt M 2009 Knight PiB C No No 135 0.1209122 NA
Storandt M 2009 Knight PiB L Yes Yes 135 0.0041069 NA
Storandt M 2009 Knight PiB L Yes Yes 135 NA 0.0041069
Tardif CL 2017 INTREPAD Ab42 C No No 46 -0.1107440 NA
Tardif CL 2017 INTREPAD ttau C No No 46 0.3570145 NA
Teipel SJ 2017 INSIGHT Florbetapir C No Yes 318 0.1100000 NA
Teipel SJ 2017 INSIGHT Florbetapir C No Yes 318 NA 0.1220000
van Bergen JMG 2018 zurich Flutemetamol C No Yes 116 -0.0447848 NA
van Harten AC 2013 Amsterdam Ab42 C No No 132 0.1643990 NA
van Harten AC 2013 Amsterdam ptau C No No 132 NA 0.6000000
van Harten AC 2013 Amsterdam ptau C No No 132 0.4472136 NA
van Harten AC 2013 Amsterdam ab42/ttau C No No 132 NA 0.5547002
van Harten AC 2013 Amsterdam ab42/ttau C No No 132 0.0000000 NA
van Harten AC 2013 Amsterdam Ab42 C No No 132 NA 0.8516583
van Harten AC 2013 Amsterdam Ab42 L Yes No 132 0.8574929 NA
van Harten AC 2013 Amsterdam ptau L Yes No 132 NA 0.4472136
van Harten AC 2013 Amsterdam ptau L Yes No 132 0.1643990 NA
van Harten AC 2013 Amsterdam ab42/ttau L Yes No 132 NA 0.8682431
van Harten AC 2013 Amsterdam ab42/ttau L Yes No 132 0.8574929 NA
van Harten AC 2013 Amsterdam Ab42 L Yes No 132 NA 0.5547002
Villemagne VL 2014 AIBL 18F-THK523 C No No 10 NA 0.0000000
Visser PJ 2009 DESCRIPA ab42/ttau L No Yes 58 0.0142401 NA
Visser PJ 2009 DESCRIPA ab42/ttau C No Yes 60 -0.0576322 NA
Visser PJ 2009 DESCRIPA ab42 L No Yes 58 NA 0.0449278
Xiong C 2016 ACS ptau C No Yes 209 0.0600000 NA
Xiong C 2016 ACS PiB C No Yes 209 0.1500000 NA
Xiong C 2016 ACS ptau L No Yes 209 0.3300000 NA
Xiong C 2016 ACS PiB L No Yes 209 0.2700000 NA
Xiong C 2016 ACS Ab42 C No Yes 209 0.0200000 NA
Xiong C 2016 ACS Ab42 L No Yes 209 0.2200000 NA
Huang KL 2018 Taiwan Florbetapir C No Yes 11 NA -0.5600000
Insel PS 2019 BioFINDER ab42/ab40 C No Yes 329 0.0458154 NA
Janelidze S 2018 Mälmo Diet Cancer Study +BioFINDER ab42/ab40 C No Yes 508 0.1161625 NA
Jansen WJ 2017 ABS PiB C No Yes 2908 0.0709225 NA
Jansen WJ 2017 ABS PiB C No Yes 2908 NA 0.0884409
Kang JM 2017 Gachon, Korea THK5351 C No Yes 43 NA 0.0677500
Kato M 2012 japan Florbetapir C No Yes 100 0.4369210 NA
Kawas CH 2012 90 + study Florbetapir C No No 13 0.3097950 NA
Kawas CH 2012 90 + study Florbetapir C No No 13 NA -0.2974385
Kawas CH 2012 90 + study Florbetapir L Yes No 7 0.9540240 NA
Kawas CH 2012 90 + study Florbetapir L Yes No 6 NA 0.3272785
Kemppainen N 2017 FINGER PiB C No Yes 48 0.1034905 NA
Kemppainen N 2017 FINGER PiB C No Yes 48 NA 0.0313408
Konijnenberg E 2019 European Information Framework for AD-PreclinAD Flutemetamol C No Yes 196 NA 0.0775520
Konijnenberg E 2019 European Information Framework for AD-PreclinAD Flutemetamol C No Yes 188 0.5812382 NA
Konijnenberg E 2019 European Information Framework for AD-PreclinAD ab42/ab40 C No Yes 126 NA 0.0345742
Konijnenberg E 2019 European Information Framework for AD-PreclinAD ab42/ab40 C No Yes 126 0.0533761 NA
Kristofikova Z 2014 Czech Republic. Ab42 C No No 15 0.1720000 NA
Kristofikova Z 2014 Czech Republic. ptau C No No 15 0.4450000 NA
Lafirdeen ASM 2019 Multicenter France Ab42 C No Yes 3562 0.2218789 NA
Leahey TM 2008 Kent USA Ab40 C No Yes 35 0.3400000 NA
Liguori C 2017 Rome Ab42 C No No 50 NA 0.7250000
Lilamand M 2019 MAPT Florbetapir C No No 269 0.1056808 NA
Lilamand M 2019 MAPT Florbetapir L Yes Yes 269 0.4713930 NA
Lilamand M 2019 MAPT Florbetapir L Yes Yes 269 NA 0.1433694
Lim YY 2015 Rhode Island Florbetapir L No No 63 0.0606041 NA
Lim YY 2015 Rhode Island Florbetapir C No No 63 -0.0452078 NA
Lim YY 2015 Rhode Island Florbetapir C No No 63 NA 0.1836993
Llado-Saz S 2015 Seville Florbetapir C No Yes 120 NA 0.0285706
Lu K 2019 DRC-UK Florbetapir C No Yes 502 0.2050000 NA
Lu K 2019 DRC-UK Florbetapir C Yes Yes 502 NA 0.1200000
Martikainen IK 2018 Finnish Geriatric Intervention Study PiB C No Yes 40 0.0304178 NA
Martikainen IK 2018 Finnish Geriatric Intervention Study PiB C No Yes 40 NA -0.1323262
McMillan CT 2016 PPMI ab42/ptau/ttau C No Yes 174 0.3727037 NA
McMillan CT 2016 PPMI Ab42 C No Yes 174 NA -0.3465076
Mecca AP 2017 Yale PiB C No Yes 45 NA 0.1270000
Aschenbrenner AJ 2014 ADRC ptau C No Yes 113 NA 0.0250000
Aschenbrenner AJ 2014 ADRC Ab42 C No Yes 113 NA -0.0650000
Aschenbrenner AJ 2014 ADRC PiB C No Yes 113 NA 0.0550000
Berenguer RG 2014 Alicante Ab42 C No No 39 NA 0.3770000
Berenguer RG 2014 Alicante ab42/ptau C No No 39 NA 0.3440000
Besson FL 2015 IMAP 0 C No No 54 -0.0504891 NA
Besson FL 2015 IMAP 0 C No No 54 NA -0.1110823
Bilgel M 2018 BLSA PiB L Yes Yes 127 NA 0.3807769
Bilgel M 2018 BLSA PiB L Yes No 127 0.6417183 NA
Casaletto KB 2017 Wisconsin ADRC ptau C No No 132 NA -0.1400000
Casaletto KB 2017 Wisconsin ADRC Ab42 C No No 132 NA 0.0200000
Chatterjee P 2019 KARVIAH Florbetaben C No No 100 -0.1245904 NA
Cosentino SA 2010 WHICAP Ab42 C No Yes 481 0.0200000 NA
Cosentino SA 2010 WHICAP Ab43 L No Yes 481 0.0100000 NA
Cosentino SA 2010 WHICAP Ab42 C Yes Yes 481 NA 0.0233333
Cosentino SA 2010 WHICAP Ab42 L Yes Yes 481 NA 0.0200000
Donohue MC 2017 ADNI Florbetapir, PiB C No No 445 0.0398969 NA
Donohue MC 2017 ADNI Florbetapir, PiB L Yes Yes 445 0.0100000 NA
Donohue MC 2017 ADNI Florbetapir, PiB L Yes Yes 445 NA 0.2400000
Doraiswamy PM 2014 cohort Florbetapir C No No 67 0.0693774 NA
Doraiswamy PM 2014 cohort Florbetapir C No No 67 NA 0.2334509
Doraiswamy PM 2014 cohort Florbetapir L Yes Yes 67 0.0941613 NA
Doraiswamy PM 2014 cohort Florbetapir L Yes Yes 67 NA 0.8284213
Dubois B 2018 INSIGHT Florbetapir C No Yes 318 0.1213773 NA
Ecay-Torres M 2018 GAP Ab42 C No Yes 238 0.0010000 NA
Farrell ME 2017 DLBS Florbetapir L Yes No 123 NA 0.8046629
Farrell ME 2017 DLBS Florbetapir L Yes No 123 0.7180338 NA
Farrell ME 2017 DLBS Florbetapir L No No 123 0.1468287 NA
Franzmeier N 2018 DELCODE Florbetapir C No No 49 0.2613050 NA
Franzmeier N 2018 DELCODE Florbetapir C No Yes 49 NA 0.1203751
Gangishetti U 2018 Emory, Penn, Washu Florbetapir C No No 44 0.1008711 NA
Haapalinna F 2018 Finland Ab42 C No No 57 NA 0.2860000
Hamelin L 2018 IMABio3 PiB L No No 17 0.1672821 NA
Hamelin L 2018 IMABio3 PiB C No No 17 0.1396219 NA
Hamelin L 2018 IMABio3 PiB L No No 17 NA 0.2762891
Zhao Y 2017 GEM PiB C No No 175 NA 0.0819069
Yaffe K 2011 Healthy ABC Ab42 C No No 658 -0.0323689 NA
Yaffe K 2011 Healthy ABC Ab42 L No No 658 -0.1112537 NA
Yaffe K 2011 Healthy ABC ab42/ab40 C No No 659 0.0198521 NA
Yaffe K 2011 Healthy ABC ab42/ab40 L No No 659 -0.0800631 NA
Meng Y 2015 Peking APL1b28 C No No 35 0.0250556 NA
Merrill DA 2013 UCLA FDDNP C No Yes 75 0.7240669 NA
Merrill DA 2013 UCLA FDDNP C No Yes 75 NA 0.6506007
Mielke MM 2017 MCSA PiB L Yes Yes 115 NA 0.0058281
Mielke MM 2017 MCSA PiB L Yes Yes 115 0.0116555 NA
Mielke MM 2012 MCSA PiB C No Yes 483 -0.0270166 NA
Mielke MM 2012 MCSA PiB C No Yes 483 NA -0.0220700
Mok VC 2016 Hong Kong PiB C No Yes 75 0.1400470 NA
Mok VC 2016 Hong Kong PiB L No Yes 53 0.0726713 NA
Mok VC 2016 Hong Kong PiB L No Yes 53 0.1850980 NA
Mok VC 2016 Hong Kong PiB L No Yes 53 0.3220456 NA
Molinuevo JL 2014 Barcelona ab42/ptau/ttau C No Yes 38 0.1724884 NA
Molinuevo JL 2014 Barcelona ab42/ptau/ttau C No Yes 38 NA 0.0722052
Moon YS 2011 Korean ab42 C No Yes 123 0.2500000 NA
Mueller SG 2018 UCSF Florbetapir C No No 51 0.1524001 NA
Mueller SG 2018 UCSF Florbetapir C No No 51 NA 0.0639220
Mukaetova-Ladinska EB 2018 Leicester ptau-181 C No Yes 26 0.0000000 NA
Nakamura A 2018 MULNIAD PiB C No Yes 38 -0.0189523 NA
Nakamura A 2018 MULNIAD PiB C No Yes 38 NA -0.0141493
Nebes RD 2013 PITT PiB C No Yes 71 NA 0.1295316
Ossenkoppele R 2013 BACS PiB C No Yes 81 0.0572249 NA
Ossenkoppele R 2013 BACS PiB C No Yes 81 NA 0.0833677
Ossenkoppele R 2013 BACS PiB C No Yes 81 -0.2292357 NA
Palmqvist S 2014 BioFINDER Flutemetamol C No Yes 118 0.3200000 NA
Palmqvist S 2014 BioFINDER Flutemetamol C No Yes 118 NA 0.2800000
Hammers DB 2017 Utah Flutemetamol C No Yes 27 NA 0.3002590
Hammers DB 2017 Utah Flutemetamol C No Yes 27 0.1912685 NA
Hanseeuw BJ 2017 HABS PiB L No No 277 0.1777283 NA
Hanseeuw BJ 2017 HABS PiB L No No 277 NA -0.0411176
Hanseeuw BJ 2017 HABS PiB C No No 277 0.1317225 NA
Hanseeuw BJ 2017 HABS PiB C No No 277 NA 0.0337453
Harrington KD 2018 AIBL Florbetapir, PiB, FDDNP C No No 494 0.0829341 NA
Harrington KD 2018 AIBL Florbetapir, PiB, FDDNP C No Yes 494 NA 0.1105152
Harrington MG 2013 Pasadena ab42/ttau C No No 46 NA -0.0663486
Jacobs HIL 2018 HABS PiB C No Yes 256 0.0759581 NA
Jacobs HIL 2018 HABS PiB C No Yes 256 NA -0.0011623
Tolboom 2009 Amsterdam PiB C No Yes 13 0.7500000 NA
Tolboom 2009 Amsterdam FDDNP C No Yes 13 0.3900000 NA
Schott JM 2010 ADNI Ab42 C No Yes 105 0.1331823 NA
Schott JM 2010 ADNI Ab42 C No Yes 105 NA -0.0303373
Lim YY 2018 AIBL Florbetapir, PiB, FDDNP C No No 447 0.2093804 NA
Lim YY 2018 AIBL Florbetapir, PiB, FDDNP L Yes Yes 447 NA 0.1505543
  # stargazer(
  #   newtab,
  #   summary = FALSE,
  #   single.row = TRUE,
  #   no.space = TRUE,
  #   digits = 2,
  #   column.sep.width = "1pt",
  #   font.size = "small", 
  #   type = 'text',
  #   out= "summary.text"
  #   )

4 Meta analysis

4.1 Grouping by cognitive domain, amyloid and tau, cross and long

#random-effects-model for r values
#data_global <- subset(data, global_composite ==1)
data$memory_composite <- factor(data$memory_composite,
                                levels = c(0, 1),
                                labels = c("", "Memory"))
data$global_composite <- factor(data$global_composite,
                                levels = c(0, 1),
                                labels = c("", "Global"))
data$cross_long <- factor(data$cross_long,
                          levels = c("C", "L"),
                          labels = c("Baseline", "Followup"))
data$amyloid <- factor(data$amyloid,
                       levels = c(0, 1),
                       labels = c("", "Amyloid "))
data$tau <- factor(data$tau,
                   levels = c(0, 1),
                   labels = c("", "Tau"))
data$interaction <- factor(data$interaction,
                           levels = c(0, 1),
                           labels = c("", "Interaction"))
first <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data,
  n = data$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR",
 
  #The summary measure we want to calculate- fisher z
  byvar = paste(
    memory_composite,
    global_composite,
    cross_long,
    amyloid,
    tau
    
  ),
  #grouping variable
  print.byvar = gs("print.byvar")
) #print grouping variable

summary(first, digits = 2, pval=TRUE)
## Number of studies combined: k = 205
## 
##                         COR            95%-CI    t  p-value
## Random effects model 0.1844 [ 0.1430; 0.2251] 8.65 < 0.0001
## Prediction interval         [-0.3689; 0.6413]              
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0842 [0.0645; 0.1032]; tau = 0.2902 [0.2539; 0.3212];
##  I^2 = 90.6% [89.5%; 91.5%]; H = 3.25 [3.09; 3.42]
## 
## Quantifying residual heterogeneity:
##  I^2 = 90.6% [89.5%; 91.5%]; H = 3.25 [3.09; 3.43]
## 
## Test of heterogeneity:
##        Q d.f.  p-value
##  2105.94  199 < 0.0001
## 
## Results for subgroups (random effects model):
##                                         k    COR            95%-CI  tau^2
## byvar = Memory  Baseline Amyloid       48 0.1403 [ 0.0543; 0.2242] 0.0780
## byvar = Memory  Baseline Amyloid  Tau   9 0.1332 [-0.0867; 0.3407] 0.0667
## byvar =  Global Baseline Amyloid       61 0.1543 [ 0.0908; 0.2164] 0.0525
## byvar =  Global Followup Amyloid       28 0.2570 [ 0.1162; 0.3877] 0.1369
## byvar =  Global Baseline Amyloid  Tau  10 0.1526 [ 0.0530; 0.2493] 0.0116
## byvar =  Global Baseline  Tau           8 0.2075 [ 0.0294; 0.3728] 0.0337
## byvar = Memory  Followup Amyloid       15 0.3069 [ 0.1007; 0.4878] 0.1350
## byvar =  Global Followup  Tau           5 0.1308 [-0.0408; 0.2949] 0.0128
## byvar =  Global Followup Amyloid  Tau   5 0.2812 [-0.3828; 0.7536] 0.3010
## byvar = Memory  Baseline  Tau           7 0.0982 [-0.1849; 0.3663] 0.0844
## byvar = Memory  Followup  Tau           3 0.2205 [-0.3714; 0.6850] 0.0472
## byvar = Memory  Followup Amyloid  Tau   4 0.3371 [-0.5961; 0.8829] 0.4132
## byvar =   Followup Amyloid              2 0.2080 [-0.9892; 0.9953] 0.0766
##                                          tau      Q   I^2
## byvar = Memory  Baseline Amyloid      0.2792 354.31 87.3%
## byvar = Memory  Baseline Amyloid  Tau 0.2583  77.68 89.7%
## byvar =  Global Baseline Amyloid      0.2291 391.05 84.9%
## byvar =  Global Followup Amyloid      0.3699 472.72 94.3%
## byvar =  Global Baseline Amyloid  Tau 0.1075  22.87 60.6%
## byvar =  Global Baseline  Tau         0.1836  26.38 77.3%
## byvar = Memory  Followup Amyloid      0.3674 259.23 94.6%
## byvar =  Global Followup  Tau         0.1133  15.03 73.4%
## byvar =  Global Followup Amyloid  Tau 0.5486 167.60 97.6%
## byvar = Memory  Baseline  Tau         0.2905  56.29 91.1%
## byvar = Memory  Followup  Tau         0.2172  17.77 88.7%
## byvar = Memory  Followup Amyloid  Tau 0.6428 166.09 98.2%
## byvar =   Followup Amyloid            0.2768   6.39 84.3%
## 
## Test for subgroup differences (random effects model):
##                     Q d.f. p-value
## Between groups   6.47   12  0.8905
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations

4.2 Forest plot

  forest(
  first,
  print.I2.ci = TRUE,
  digits.sd = 2,
  layout = "subgroup",
  #layout = "subgroup",
  squaresize = 0.8,
  plotwidth = unit(8, "cm"),
  fontsize = 5,
  addspace = FALSE,
  xlab = "Fisher z",
  calcwidth.hetstat = TRUE
)

#option 1 -all studies
# fun <- trimfill(first)
# funnel(
#   fun,
#   pch = ifelse(fun$trimfill, 1, 16),
#   level = 0.9,
#   comb.random = FALSE
# )
# 
# funnel(first, 
#        main = "Standard Error")
# funnel(first, 
#        yaxis = "invvar")
# funnel(first,
#        yaxis = "size",
#        main = "Sampling size",
#        title = "hsjs")
#option 2 - only memory-amyloid, yaxis = 1/SE

# data_memory_amyloid <-
#   subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1")
# memory_amyloid <-
#   cbind(as.numeric(data$all_r), as.numeric(data$weight_se))
# viz_rainforest(memory_amyloid, type = "summary_only", method = "DL")
# viz_funnel(
#   memory_amyloid,
#   y_axis = "precision",
#   contours = TRUE,
#   trim_and_fill = TRUE,
#   trim_and_fill_side = "left",
#   egger = TRUE
# )
# 
# #option 3 - only memory-amyloid, yaxis = SE
# viz_funnel(
#   memory_amyloid,
#   y_axis = "se",
#   contours = TRUE,
#   trim_and_fill = TRUE,
#   trim_and_fill_side = "left",
#   egger = TRUE
# 
# )

5 Using metafor package

5.1 Memory amyloid

# data <- subset(data_full, table1 == 1, exclude != 0)
# data_memory_amyloid <-
#   subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1")
# dat <-
#   escalc(
#     measure = "ZCOR",
#     ri = as.numeric(data_memory_amyloid$all_r),
#     ni = as.numeric(data_memory_amyloid$total_nc),
#     
#     data = data_memory_amyloid
#   ) #
# 
# # meta-analysis of the transformed correlations
# res <- rma(yi, vi, data = dat, method = "DL", slab=paste(dat$author, dat$year, sep=", "))
# print(res)
# 
# # method="DL" = DerSimonian-Laird estimator
# # method="HE" = Hedges estimator
# # method="HS" = Hunter-Schmidt estimator
# # method="SJ" = Sidik-Jonkman estimator
# # method="ML" = maximum-likelihood estimator
# # method="REML" = restricted maximum-likelihood estimator
# # method="EB" = empirical Bayes estimator
# # method="PM" = Paule-Mandel estimator
# # method="GENQ" = generalized Q-statistic estimator
# 
# #funnel plot
# funnel(
#   res,
#   yaxis = "sei",
#   #level = c(90, 95, 99),
#   #shade = c("white", "gray55", "gray75"),
#   #refline = 0,
#   #legend = TRUE,
# 
#   
#   label = TRUE,
#   studlab = TRUE
# )
# funnel(
#   res,
#   yaxis = "seinv",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE,
#   studlab = TRUE
# )
# funnel(
#   res,
#   yaxis = "ni",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE,
#   studlab = TRUE
# )
# funnel(
#   res,
#   yaxis = "ninv",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE,
#   studlab = TRUE
# )
# funnel(
#   res,
#   yaxis = "sqrtni",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE,
#   studlab = TRUE
# )
# funnel(
#   res,
#   yaxis = "wi",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE,
#   studlab = TRUE
# )

5.2 Memory tau

# data_memory_tau <-
#   subset(data, table1== "1" & data$memory_composite == "1" & data$tau == "1" & data$amyloid != "1" )
# dat <-
#   escalc(
#     measure = "ZCOR",
#     ri = as.numeric(data_memory_tau$all_r),
#     ni = as.numeric(data_memory_tau$total_nc),
#     data = data_memory_tau
#   ) #
# 
# # meta-analysis of the transformed correlations
# res <- rma(yi, vi, data = dat, method = "DL")
# print(res)
# 
# # Standard funnel plot (Plot A)
# 
# 
# funnel(
#   res,
#   yaxis = "sei",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE,
#   slab=paste(dat$author, dat$year, sep=", "),
#   label = TRUE
# )
# funnel(
#   res,
#   yaxis = "seinv",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE,
#   label = "all"
# )
# funnel(
#   res,
#   yaxis = "ni",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE,
#   label = "all"
# )
# funnel(
#   res,
#   yaxis = "ninv",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "sqrtni",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "wi",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE,
#   studlab = TRUE
# )

5.3 Global Amyloid

# 
# 
# 
# data_global_amyloid <-
#   subset(data, table1== "1" & data$global_composite == "1" & data$amyloid == "1" & data$tau != "1")
# dat <-
#   escalc(
#     measure = "ZCOR",
#     ri = as.numeric(data_global_amyloid$all_r),
#     ni = as.numeric(data_global_amyloid$total_nc),
#     data = data_global_amyloid
#   ) #
# 
# # meta-analysis of the transformed correlations
# res <- rma(yi, vi, data = dat, method = "DL")
# print(res)
# 
# #funnel plot
# funnel(
#   res,
#   yaxis = "sei",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "seinv",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "ni",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "ninv",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "sqrtni",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "wi",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )

5.4 Global tau

# data_global_tau <-
#   subset(data, table1== "1" & data$global_composite == "1" & data$tau == "1" & data$amyloid != "1")
# dat <-
#   escalc(
#     measure = "ZCOR",
#     ri = as.numeric(data_global_tau$all_r),
#     ni = as.numeric(data_global_tau$total_nc),
#     data = data_global_tau
#   ) #
# 
# # meta-analysis of the transformed correlations
# res <- rma(yi, vi, data = dat, method = "DL")
# print(res)
# 
# # Standard funnel plot (Plot A)
# 
# 
# funnel(
#   res,
#   yaxis = "sei",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "seinv",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "ni",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "ninv",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "sqrtni",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )
# funnel(
#   res,
#   yaxis = "wi",
#   level = c(90, 95, 99),
#   shade = c("white", "gray55", "gray75"),
#   refline = 0,
#   legend = TRUE
# )

6 Extra

6.1 Meta analysis domain, method, cross, long

#random-effects-model for r values
#data_global <- subset(data, global_composite ==1)
# data$memory_composite <- factor(data$memory_composite,
#                                 levels = c(0, 1),
#                                 labels = c("", "Memory"))
# data$global_composite <- factor(data$global_composite,
#                                 levels = c(0, 1),
#                                 labels = c("", "Global"))
# data$cross_long <- factor(data$cross_long,
#                           levels = c(1, 2),
#                           labels = c("Baseline", "Followup"))
# data$amyloid <- factor(data$amyloid,
#                        levels = c(0, 1),
#                        labels = c("", "Amyloid "))
# data$tau <- factor(data$tau,
#                    levels = c(0, 1),
#                    labels = c("", "Tau"))
# data$interaction <- factor(data$interaction,
#                            levels = c(0, 1),
#                            labels = c("", "Interaction"))
# second <- metacor(
#   as.numeric(all_r),
#   #column with r values
#   #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
#   data = data,
#   n = data$total_nc,
#   #sample sizes
#   studlab = paste(author),
#   # labels for each study
#   comb.fixed = FALSE,
#   #Whether to use a fixed-effects model
#   comb.random = TRUE,
#   #Whether to use a random-effects model
#   method.tau = "SJ",
#   #Which estimator to use for the between-study variance
#   hakn = TRUE,
#   #Which estimator to use for the between-study variance
#   prediction = TRUE,
#   #Whether to print a prediction interval for the effect of future studies based on present evidence
#   sm = "ZCOR",
#   #The summary measure we want to calculate- fisher z
#   byvar = paste(
#     memory_composite,
#     global_composite,
#     cross_long,
#     method
#   ),
#   #grouping variable
#   print.byvar = gs("print.byvar")
# ) #print grouping variable
# 
# print(second,  digits = 2)

7 Memory amyloid baseline

data <- subset(data_full, table1 == 1, exclude != 0)
data_memory_amyloid <-
  subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1" & data$cross_long == "C" )
MA <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data_memory_amyloid,
  n = data_memory_amyloid$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR"
 
  #The summary measure we want to calculate- fisher z
  
  #grouping variable
  
) #print grouping variable

summary(MA, digits = 2, pval=TRUE)
## Number of studies combined: k = 48
## 
##                         COR            95%-CI    t p-value
## Random effects model 0.1403 [ 0.0543; 0.2242] 3.27  0.0020
## Prediction interval         [-0.4033; 0.6107]             
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0780 [0.0462; 0.1295]; tau = 0.2792 [0.2149; 0.3599];
##  I^2 = 87.3% [83.9%; 90.0%]; H = 2.81 [2.49; 3.16]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  354.31   45 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
 MA,
  yaxis= "se",
 legend = TRUE,
 main = "Standard Error",
 studlab = TRUE,
 level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour

## [1] "#808080" "#B3B3B3" "#E6E6E6"

Timmers T doi: 10.1016/j.pdpdt.2019.04.022 , Amsterdam, 107 NC , Florbetepan - checked Merrill DA doi: 10.3233/JAD-121903, 75 NC, FRS, FDDNP - checked Liguori doi: 10.1093/sleep/zsx011, 50 NC with, 35 with obstructuve sleep apnea, CSF ab42 - checked

8 Memory amyloid longitudinal

data <- subset(data_full, table1 == 1, exclude != 0)
data_memory_amyloidL <-
  subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1" & data$cross_long == "L")
MAL <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data_memory_amyloidL,
  n = data_memory_amyloidL$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR"
 
  #The summary measure we want to calculate- fisher z
  
  #grouping variable
  
) #print grouping variable

summary(MAL, digits = 2, pval=TRUE)
## Number of studies combined: k = 15
## 
##                         COR            95%-CI    t p-value
## Random effects model 0.3069 [ 0.1007; 0.4878] 3.15  0.0071
## Prediction interval         [-0.4668; 0.8145]             
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1350 [0.0676; 0.3510]; tau = 0.3674 [0.2600; 0.5924];
##  I^2 = 94.6% [92.5%; 96.1%]; H = 4.30 [3.66; 5.06]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  259.23   14 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
 MAL,
  yaxis= "se",
 legend = TRUE,
 main = "Standard Error",
 studlab = TRUE,
 level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour

## [1] "#808080" "#B3B3B3" "#E6E6E6"

Doraiswamy Florbetapir F, 69 NC 18 Farrel Timmers T doi: 10.1016/j.pdpdt.2019.04.022 , Amsterdam, 107 NC , Florbetepan - checked van Harten Bilgen

9 Memory Tau baseline

data <- subset(data_full, table1 == 1, exclude != 0)
data_memory_tau <-
  subset(data, table1== "1" & data$memory_composite == "1" & data$tau == "1" & data$amyloid != "1" & data$cross_long == "C")

MT <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data_memory_tau ,
  n = data_memory_tau $total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR"
 
  #The summary measure we want to calculate- fisher z
  
  #grouping variable
  
) #print grouping variable

summary(MT, digits = 2, pval=TRUE)
## Number of studies combined: k = 7
## 
##                         COR            95%-CI    t p-value
## Random effects model 0.0982 [-0.1849; 0.3663] 0.84  0.4310
## Prediction interval         [-0.6084; 0.7179]             
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0844 [0.0276; 0.5597]; tau = 0.2905 [0.1662; 0.7481];
##  I^2 = 91.1% [83.4%; 95.2%]; H = 3.36 [2.46; 4.58]
## 
## Test of heterogeneity:
##      Q d.f.  p-value
##  56.29    5 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
 MT,
  yaxis= "se",
 legend = TRUE,
 main = "Standard Error",
 studlab = TRUE,
 level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour

## [1] "#808080" "#B3B3B3" "#E6E6E6"

10 Memory Tau longitudinal

data <- subset(data_full, table1 == 1, exclude != 0)
data_memory_tauL <-
  subset(data, table1== "1" & data$memory_composite == "1" & data$tau == "1" & data$amyloid != "1" & data$cross_long == "L")

MTL <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data_memory_tauL ,
  n = data_memory_tauL$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR"
 
  #The summary measure we want to calculate- fisher z
  
  #grouping variable
  
) #print grouping variable

summary(MTL, digits = 2, pval=TRUE)
## Number of studies combined: k = 3
## 
##                         COR            95%-CI    t p-value
## Random effects model 0.2205 [-0.3714; 0.6850] 1.57  0.2569
## Prediction interval         [-0.9958; 0.9983]             
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0472 [0.0086; 2.1927]; tau = 0.2172 [0.0929; 1.4808];
##  I^2 = 88.7% [69.0%; 95.9%]; H = 2.98 [1.80; 4.95]
## 
## Test of heterogeneity:
##      Q d.f. p-value
##  17.77    2  0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
 MTL,
  yaxis= "se",
 legend = TRUE,
 main = "Standard Error",
 studlab = TRUE,
 level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour

## [1] "#808080" "#B3B3B3" "#E6E6E6"

11 Global amyloid baseline

data <- subset(data_full, table1 == 1, exclude != 0)
data_global_amyloid <-
  subset(data, table1== "1" & data$global_composite == "1" & data$amyloid == "1" & data$tau != "1" & data$cross_long == "C")

GA <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data_global_amyloid,
  n = data_global_amyloid$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR"
  #The summary measure we want to calculate- fisher z
  
  #grouping variable
  
) #print grouping variable

summary(GA, digits = 2, pval=TRUE)
## Number of studies combined: k = 61
## 
##                         COR            95%-CI    t  p-value
## Random effects model 0.1543 [ 0.0908; 0.2164] 4.83 < 0.0001
## Prediction interval         [-0.2981; 0.5500]              
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0525 [0.0315; 0.0807]; tau = 0.2291 [0.1775; 0.2840];
##  I^2 = 84.9% [81.3%; 87.8%]; H = 2.57 [2.31; 2.87]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  391.05   59 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
 GA,
  yaxis= "se",
 legend = TRUE,
 main = "Standard Error",
 studlab = TRUE,
 level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour

## [1] "#808080" "#B3B3B3" "#E6E6E6"

12 Global amyloid longitudinal

data <- subset(data_full, table1 == 1, exclude != 0)
data_global_amyloidL <-
  subset(data, table1== "1" & data$global_composite == "1" & data$amyloid == "1" & data$tau != "1" & data$cross_long == "L")

GAL <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data_global_amyloidL,
  n = data_global_amyloidL$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR"
  #The summary measure we want to calculate- fisher z
  
  #grouping variable
  
) #print grouping variable

summary(GAL, digits = 2, pval=TRUE)
## Number of studies combined: k = 28
## 
##                         COR            95%-CI    t p-value
## Random effects model 0.2570 [ 0.1162; 0.3877] 3.69  0.0010
## Prediction interval         [-0.4711; 0.7768]             
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1369 [0.0691; 0.2721]; tau = 0.3699 [0.2629; 0.5216];
##  I^2 = 94.3% [92.7%; 95.5%]; H = 4.18 [3.71; 4.72]
## 
## Test of heterogeneity:
##       Q d.f.  p-value
##  472.72   27 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
 GAL,
  yaxis= "se",
 legend = TRUE,
 main = "Standard Error",
 studlab = TRUE,
 level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour

## [1] "#808080" "#B3B3B3" "#E6E6E6"

13 Global tau baseline

data <- subset(data_full, table1 == 1, exclude != 0)
data_global_tau <-
  subset(data, table1== "1" & data$global_composite == "1" & data$tau == "1" & data$amyloid != "1" & data$cross_long == "C")


GT <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data_global_tau,
  n = data_global_tau$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR"
 
  #The summary measure we want to calculate- fisher z
  
  #grouping variable
  
) #print grouping variable

summary(GT, digits = 2, pval=TRUE)
## Number of studies combined: k = 8
## 
##                         COR            95%-CI    t p-value
## Random effects model 0.2075 [ 0.0294; 0.3728] 2.75  0.0286
## Prediction interval         [-0.2695; 0.6027]             
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0337 [0.0066; 0.2157]; tau = 0.1836 [0.0811; 0.4644];
##  I^2 = 77.3% [52.6%; 89.1%]; H = 2.10 [1.45; 3.03]
## 
## Test of heterogeneity:
##      Q d.f. p-value
##  26.38    6  0.0002
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
 GT,
  yaxis= "se",
 legend = TRUE,
 main = "Standard Error",
 studlab = TRUE,
 level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour

## [1] "#808080" "#B3B3B3" "#E6E6E6"

14 Global tau longitudinal

data <- subset(data_full, table1 == 1, exclude != 0)
data_global_tauL <-
  subset(data, table1== "1" & data$global_composite == "1" & data$tau == "1" & data$amyloid != "1" & data$cross_long == "L")


GTL <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data_global_tauL,
  n = data_global_tauL$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR"
 
  #The summary measure we want to calculate- fisher z
  
  #grouping variable
  
) #print grouping variable

summary(GTL, digits = 2, pval=TRUE)
## Number of studies combined: k = 5
## 
##                         COR            95%-CI    t p-value
## Random effects model 0.1308 [-0.0408; 0.2949] 2.12  0.1015
## Prediction interval         [-0.2725; 0.4950]             
## 
## Quantifying heterogeneity:
##  tau^2 = 0.0128 [0.0015; 0.1398]; tau = 0.1133 [0.0392; 0.3739];
##  I^2 = 73.4% [33.6%; 89.3%]; H = 1.94 [1.23; 3.06]
## 
## Test of heterogeneity:
##      Q d.f. p-value
##  15.03    4  0.0046
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
 GTL,
  yaxis= "se",
 legend = TRUE,
 #main = "Standard Error",
 studlab = TRUE,
 level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour

## [1] "#808080" "#B3B3B3" "#E6E6E6"