library(meta)
library(metasens)
library(readxl)
library(metafor)
library(DescTools)
library(psych)
library(tidyverse)
library(metaviz)
library(table1)
library(stargazer)
#download data and subset it
data_full <- read_xlsx("/Users/carolinaferreiraatuesta/Documents/H-LAND/Meta Analysis/data_feb.xlsx", sheet= "representatives_global_memory")
data <- subset(data_full, table1 ==1, exclude !=0 )
data_table1 <- subset(data_full, table1 == 1, exclude != 0)
#labels
label(data_table1$memory_composite) <- "Memory"
label(data_table1$global_composite) <- 'Global'
label(data_table1$author) <- 'Author'
label(data_table1$year) <- 'Year '
label(data_table1$amyloid) <- 'Amyloid'
label(data_table1$tau) <- 'Tau'
label(data_table1$interaction) <- 'Interaction'
label(data_table1$addition) <- 'Addition'
label(data_table1$selected_tau_amyloid) <- 'Selected ligand'
label(data_table1$ligand) <- 'Ligand'
label(data_table1$ligand_other) <- 'Ligand other'
label(data_table1$csf) <- 'CSF'
label(data_table1$csf_other) <- 'CSF other'
label(data_table1$serum) <- 'Serum'
label(data_table1$type_study) <- 'Type study'
label(data_table1$neurodeg) <- 'Neurodegeneration'
label(data_table1$method) <- 'Method'
label(data_table1$controlled) <- 'Controlled'
label(data_table1$cov_time) <- 'Time'
label(data_table1$sex) <- 'Sex'
label(data_table1$education) <- 'Education'
label(data_table1$apoe) <- 'Apoe'
label(data_table1$covaratiate_others) <- 'Other cov'
label(data_table1$cohort_database) <- 'Cohort'
label(data_table1$age_type) <- 'Age type'
#label(data_table1$age) <- 'Age'
#label(data_table1$age_variance) <- 'Age variance'
#abel(data_table1$total_nc) <- 'Total N'
#label(data_table1$nc_pos) <- 'N positive'
#label(data_table1$nc_neg) <- 'N negative'
label(data_table1$roi_lateral_temporal) <- 'ROI temporal lateral'
label(data_table1$roi_entorhinal_hippocampus) <-
'ROI entorhinal or hipocampus'
label(data_table1$roi_lateral_parietal) <- 'ROI parietal lateral'
label(data_table1$roi_cingulate) <- 'ROI cingulate'
label(data_table1$roi_frontal) <- 'ROI frontal'
label(data_table1$roi_precuneus) <- 'ROI precuneus'
label(data_table1$roi_occipital) <- 'ROI occipital'
label(data_table1$suvr_dvr) <- 'SUVR/DVR'
#label(data_table1$type_cognitive) <- ''
label(data_table1$cross_long) <- 'CS or Longitudinal'
label(data_table1$all_r) <- 'R value'
label(data_table1$exclude) <- ''
label(data_table1$fisherz) <- 'Fisher z'
label(data_table1$weight) <- 'Weighted (n-3)'
label(data_table1$weight_se) <- 'Weigted SE'
#as factors
data_table1$memory_composite <-
as.factor(data_table1$memory_composite)
data_table1$global_composite <-
as.factor(data_table1$global_composite)
data_table1$amyloid <- as.factor(data_table1$amyloid)
data_table1$tau <- as.factor(data_table1$tau)
data_table1$interaction <- as.factor(data_table1$interaction)
data_table1$addition <- as.factor(data_table1$addition)
data_table1$selected_tau_amyloid <-
as.factor(data_table1$selected_tau_amyloid)
data_table1$type_study <- as.factor(data_table1$type_study)
data_table1$neurodeg <- as.factor(data_table1$neurodeg)
data_table1$sex <- as.factor(data_table1$sex)
data_table1$education <- as.factor(data_table1$education)
data_table1$apoe <- as.factor(data_table1$apoe)
data_table1$age_type <- as.factor(data_table1$age_type)
data_table1$roi_lateral_temporal <-
as.factor(data_table1$roi_lateral_temporal)
data_table1$roi_entorhinal_hippocampus <-
as.factor(data_table1$roi_entorhinal_hippocampus)
data_table1$roi_lateral_parietal <-
as.factor(data_table1$roi_lateral_parietal)
data_table1$roi_cingulate <- as.factor(data_table1$roi_cingulate)
data_table1$roi_frontal <- as.factor(data_table1$roi_frontal)
data_table1$roi_precuneus <- as.factor(data_table1$roi_precuneus)
data_table1$roi_occipital <- as.factor(data_table1$roi_occipital)
data_table1$suvr_dvr <- as.factor(data_table1$suvr_dvr)
data_table1$type_cognitive <- as.factor(data_table1$type_cognitive)
data_table1$cross_long <- as.factor(data_table1$cross_long)
newtab <-
data.frame(
data_table1$author,
data_table1$year,
data_table1$cohort_database,
data_table1$method,
data_table1$cross_long,
data_table1$cov_time,
data_table1$controlled,
data_table1$total_nc,
data_table1$Global_composite,
data_table1$Memory_composite
)
names(newtab)[names(newtab) == "data_table1.author"] <- "Author"
names(newtab)[names(newtab) == "data_table1.method"] <- "Method"
names(newtab)[names(newtab) == "data_table1.year"] <- "Year"
names(newtab)[names(newtab) == "data_table1.cohort_database"] <- "Cohort"
names(newtab)[names(newtab) == "data_table1.cross_long"] <- "Type of study"
names(newtab)[names(newtab) == "data_table1.cov_time"] <- "Controlled by time of follow-up"
names(newtab)[names(newtab) == "data_table1.controlled"] <- "Controlled"
names(newtab)[names(newtab) == "data_table1.total_nc"] <- "N"
names(newtab)[names(newtab) == "data_table1.Global_composite"] <- "Global"
names(newtab)[names(newtab) == "data_table1.Memory_composite"] <- "Memory"
kableExtra::kbl(newtab) %>%
kableExtra::kable_paper(bootstrap_options = "striped", full_width = F)
| Author | Year | Cohort | Method | Type of study | Controlled by time of follow-up | Controlled | N | Global | Memory |
|---|---|---|---|---|---|---|---|---|---|
| Gu | 2012 | WHICAP | Ab42 | C | No | Yes | 813 | NA | 0.0670742 |
| Horn MM | 2018 | Dallas | PiB | C | No | Yes | 195 | NA | 0.2500000 |
| Hoscheidt SM | 2016 | IMPACT | ab42/ab40/ptau/ttau | C | No | Yes | 70 | NA | 0.0964365 |
| Hosokawa C | 2014 | Osakasayama, Japan, | PiB | C | No | No | 90 | 0.7628017 | NA |
| Adamczuk K | 2014 | Leuven | Flutemetamol | C | No | Yes | 56 | 0.2271847 | NA |
| Adamczuk K | 2014 | Leuven | Flutemetamol | C | No | Yes | 56 | NA | 0.2150714 |
| Aizenstein HJ | 2008 | PITT | PiB | C | No | No | 38 | -0.1215034 | NA |
| Aizenstein HJ | 2008 | PITT | PiB | C | No | No | 34 | NA | -0.3791941 |
| Pomara N | 2005 | Nathan Kline | Ab42 | L | No | No | 34 | 0.4100000 | NA |
| Radanovic M | 2019 | Brazil | ab42/ptau181 | C | No | Yes | 54 | 0.2070000 | NA |
| Radanovic M | 2019 | Brazil | Ab42 | C | No | Yes | 54 | 0.2110000 | NA |
| Radanovic M | 2019 | Brazil | ptau181 | C | No | Yes | 54 | 0.2840000 | NA |
| Rentz DM | 2010 | HABS | PiB | C | No | Yes | 66 | NA | 0.0000000 |
| Resnick SM | 2010 | BLSA | PiB | L | Yes | Yes | 51 | NA | 0.0163589 |
| Resnick SM | 2010 | BLSA | PiB | L | Yes | Yes | 51 | 0.0135846 | NA |
| Roberts RO | 2018 | MCSA | PiB | L | No | Yes | 1492 | 0.0367629 | NA |
| Roberts RO | 2018 | MCSA | PiB | L | No | Yes | 1492 | NA | 0.0385758 |
| Roberts RO | 2018 | MCSA | PiB | C | No | No | 1492 | 0.2466143 | NA |
| Roberts RO | 2018 | MCSA | PiB | C | No | No | 1492 | NA | 0.1638525 |
| Roe CM | 2013 | Knight | ptau181 | L | No | Yes | 430 | 0.0548775 | NA |
| Roe CM | 2013 | Knight | ptau181/ab42 | L | No | Yes | 430 | 0.0926467 | NA |
| Roe CM | 2013 | Knight | ab42 | L | No | Yes | 430 | 0.0678207 | NA |
| Rosenberg PB | 2013 | John Hopkns | Florbetapir | C | No | No | 15 | NA | 0.1500000 |
| Rosenberg PB | 2013 | John Hopkns | Florbetapir | C | No | No | 15 | 0.1650000 | NA |
| Sanabria A | 2018 | FACEHBI | PiB | C | No | Yes | 200 | NA | 0.0000000 |
| Schindler SE | 2017 | Knight | Ab42 | C | Yes | Yes | 233 | NA | 0.0695833 |
| Schindler SE | 2017 | Knight | Ab42 | C | Yes | Yes | 233 | 0.0755000 | NA |
| Schindler SE | 2017 | Knight | ptau | C | Yes | Yes | 233 | NA | 0.0282500 |
| Schindler SE | 2017 | Knight | ptau | C | Yes | Yes | 233 | 0.0025000 | NA |
| Schindler SE | 2017 | Knight | ptau/ab42 | C | Yes | Yes | 233 | NA | 0.0950833 |
| Schindler SE | 2017 | Knight | ptau/ab42 | C | Yes | Yes | 233 | 0.0695000 | NA |
| Schindler SE | 2017 | Knight | Ab42 | L | Yes | Yes | 233 | 0.0405000 | NA |
| Schindler SE | 2017 | Knight | Ab42 | L | Yes | Yes | 233 | NA | 0.0110000 |
| Schindler SE | 2017 | Knight | ptau | L | Yes | Yes | 233 | 0.0135000 | NA |
| Schindler SE | 2017 | Knight | ptau | L | Yes | Yes | 233 | NA | 0.0175000 |
| Schindler SE | 2017 | Knight | ptau/ab42 | L | Yes | Yes | 233 | 0.0385000 | NA |
| Schindler SE | 2017 | Knight | ptau/ab42 | L | Yes | Yes | 233 | NA | 0.0210000 |
| Sala-Llonch R | 2017 | Norway | Ab42 | C | No | No | 89 | NA | -0.0524737 |
| Sala-Llonch R | 2017 | Norway | Ab42 | C | No | No | 89 | -0.0467196 | NA |
| Sala-Llonch R | 2017 | Norway | Ab42 | L | No | No | 89 | 0.1102283 | NA |
| Sierra-Rio A | 2015 | Barcelona | ab42/ptau | C | No | No | 55 | 0.0475204 | NA |
| Song Z | 2016 | DLBS | Florbetapir | C | No | No | 82 | NA | 0.1287696 |
| Song Z | 2016 | DLBS | Florbetapir | C | No | No | 82 | 0.1225236 | NA |
| Song Z | 2015 | UCSF | Florbetapir | C | No | Yes | 50 | NA | 0.0040000 |
| Song Z | 2015 | UCSF | Florbetapir | C | No | Yes | 50 | 0.0200000 | NA |
| Stomrud E | 2010 | CMRU | Ab42 | C | No | Yes | 37 | -0.0005000 | NA |
| Stomrud E | 2010 | CMRU | ptau 181 | C | No | Yes | 37 | -0.0320000 | NA |
| Stomrud E | 2010 | CMRU | ptau 181 | L | No | Yes | 37 | 0.0600000 | NA |
| Stomrud E | 2010 | CMRU | Ab42 | L | No | Yes | 37 | 0.2300000 | NA |
| Stomrud E | 2010 | CMRU | ptau 181 | C | No | Yes | 37 | NA | -0.1280000 |
| Stomrud E | 2010 | CMRU | Ab42 | C | No | Yes | 37 | NA | 0.1340000 |
| Stomrud E | 2010 | CMRU | ptau 181 | L | No | Yes | 37 | NA | -0.0940000 |
| Stomrud E | 2010 | CMRU | Ab42 | L | No | Yes | 37 | NA | 0.4370000 |
| Timmers T | 2019 | SCIENCe | Florbetapir | C | No | Yes | 107 | 0.7456244 | NA |
| Timmers T | 2019 | SCIENCe | Florbetapir | C | No | Yes | 107 | NA | 0.6711077 |
| Timmers T | 2019 | SCIENCe | Florbetapir | L | No | Yes | 107 | 0.4860464 | NA |
| Timmers T | 2019 | SCIENCe | Florbetapir | L | No | Yes | 107 | NA | 0.3085927 |
| Storandt M | 2009 | Knight | PiB | C | No | No | 135 | 0.1209122 | NA |
| Storandt M | 2009 | Knight | PiB | L | Yes | Yes | 135 | 0.0041069 | NA |
| Storandt M | 2009 | Knight | PiB | L | Yes | Yes | 135 | NA | 0.0041069 |
| Tardif CL | 2017 | INTREPAD | Ab42 | C | No | No | 46 | -0.1107440 | NA |
| Tardif CL | 2017 | INTREPAD | ttau | C | No | No | 46 | 0.3570145 | NA |
| Teipel SJ | 2017 | INSIGHT | Florbetapir | C | No | Yes | 318 | 0.1100000 | NA |
| Teipel SJ | 2017 | INSIGHT | Florbetapir | C | No | Yes | 318 | NA | 0.1220000 |
| van Bergen JMG | 2018 | zurich | Flutemetamol | C | No | Yes | 116 | -0.0447848 | NA |
| van Harten AC | 2013 | Amsterdam | Ab42 | C | No | No | 132 | 0.1643990 | NA |
| van Harten AC | 2013 | Amsterdam | ptau | C | No | No | 132 | NA | 0.6000000 |
| van Harten AC | 2013 | Amsterdam | ptau | C | No | No | 132 | 0.4472136 | NA |
| van Harten AC | 2013 | Amsterdam | ab42/ttau | C | No | No | 132 | NA | 0.5547002 |
| van Harten AC | 2013 | Amsterdam | ab42/ttau | C | No | No | 132 | 0.0000000 | NA |
| van Harten AC | 2013 | Amsterdam | Ab42 | C | No | No | 132 | NA | 0.8516583 |
| van Harten AC | 2013 | Amsterdam | Ab42 | L | Yes | No | 132 | 0.8574929 | NA |
| van Harten AC | 2013 | Amsterdam | ptau | L | Yes | No | 132 | NA | 0.4472136 |
| van Harten AC | 2013 | Amsterdam | ptau | L | Yes | No | 132 | 0.1643990 | NA |
| van Harten AC | 2013 | Amsterdam | ab42/ttau | L | Yes | No | 132 | NA | 0.8682431 |
| van Harten AC | 2013 | Amsterdam | ab42/ttau | L | Yes | No | 132 | 0.8574929 | NA |
| van Harten AC | 2013 | Amsterdam | Ab42 | L | Yes | No | 132 | NA | 0.5547002 |
| Villemagne VL | 2014 | AIBL | 18F-THK523 | C | No | No | 10 | NA | 0.0000000 |
| Visser PJ | 2009 | DESCRIPA | ab42/ttau | L | No | Yes | 58 | 0.0142401 | NA |
| Visser PJ | 2009 | DESCRIPA | ab42/ttau | C | No | Yes | 60 | -0.0576322 | NA |
| Visser PJ | 2009 | DESCRIPA | ab42 | L | No | Yes | 58 | NA | 0.0449278 |
| Xiong C | 2016 | ACS | ptau | C | No | Yes | 209 | 0.0600000 | NA |
| Xiong C | 2016 | ACS | PiB | C | No | Yes | 209 | 0.1500000 | NA |
| Xiong C | 2016 | ACS | ptau | L | No | Yes | 209 | 0.3300000 | NA |
| Xiong C | 2016 | ACS | PiB | L | No | Yes | 209 | 0.2700000 | NA |
| Xiong C | 2016 | ACS | Ab42 | C | No | Yes | 209 | 0.0200000 | NA |
| Xiong C | 2016 | ACS | Ab42 | L | No | Yes | 209 | 0.2200000 | NA |
| Huang KL | 2018 | Taiwan | Florbetapir | C | No | Yes | 11 | NA | -0.5600000 |
| Insel PS | 2019 | BioFINDER | ab42/ab40 | C | No | Yes | 329 | 0.0458154 | NA |
| Janelidze S | 2018 | Mälmo Diet Cancer Study +BioFINDER | ab42/ab40 | C | No | Yes | 508 | 0.1161625 | NA |
| Jansen WJ | 2017 | ABS | PiB | C | No | Yes | 2908 | 0.0709225 | NA |
| Jansen WJ | 2017 | ABS | PiB | C | No | Yes | 2908 | NA | 0.0884409 |
| Kang JM | 2017 | Gachon, Korea | THK5351 | C | No | Yes | 43 | NA | 0.0677500 |
| Kato M | 2012 | japan | Florbetapir | C | No | Yes | 100 | 0.4369210 | NA |
| Kawas CH | 2012 | 90 + study | Florbetapir | C | No | No | 13 | 0.3097950 | NA |
| Kawas CH | 2012 | 90 + study | Florbetapir | C | No | No | 13 | NA | -0.2974385 |
| Kawas CH | 2012 | 90 + study | Florbetapir | L | Yes | No | 7 | 0.9540240 | NA |
| Kawas CH | 2012 | 90 + study | Florbetapir | L | Yes | No | 6 | NA | 0.3272785 |
| Kemppainen N | 2017 | FINGER | PiB | C | No | Yes | 48 | 0.1034905 | NA |
| Kemppainen N | 2017 | FINGER | PiB | C | No | Yes | 48 | NA | 0.0313408 |
| Konijnenberg E | 2019 | European Information Framework for AD-PreclinAD | Flutemetamol | C | No | Yes | 196 | NA | 0.0775520 |
| Konijnenberg E | 2019 | European Information Framework for AD-PreclinAD | Flutemetamol | C | No | Yes | 188 | 0.5812382 | NA |
| Konijnenberg E | 2019 | European Information Framework for AD-PreclinAD | ab42/ab40 | C | No | Yes | 126 | NA | 0.0345742 |
| Konijnenberg E | 2019 | European Information Framework for AD-PreclinAD | ab42/ab40 | C | No | Yes | 126 | 0.0533761 | NA |
| Kristofikova Z | 2014 | Czech Republic. | Ab42 | C | No | No | 15 | 0.1720000 | NA |
| Kristofikova Z | 2014 | Czech Republic. | ptau | C | No | No | 15 | 0.4450000 | NA |
| Lafirdeen ASM | 2019 | Multicenter France | Ab42 | C | No | Yes | 3562 | 0.2218789 | NA |
| Leahey TM | 2008 | Kent USA | Ab40 | C | No | Yes | 35 | 0.3400000 | NA |
| Liguori C | 2017 | Rome | Ab42 | C | No | No | 50 | NA | 0.7250000 |
| Lilamand M | 2019 | MAPT | Florbetapir | C | No | No | 269 | 0.1056808 | NA |
| Lilamand M | 2019 | MAPT | Florbetapir | L | Yes | Yes | 269 | 0.4713930 | NA |
| Lilamand M | 2019 | MAPT | Florbetapir | L | Yes | Yes | 269 | NA | 0.1433694 |
| Lim YY | 2015 | Rhode Island | Florbetapir | L | No | No | 63 | 0.0606041 | NA |
| Lim YY | 2015 | Rhode Island | Florbetapir | C | No | No | 63 | -0.0452078 | NA |
| Lim YY | 2015 | Rhode Island | Florbetapir | C | No | No | 63 | NA | 0.1836993 |
| Llado-Saz S | 2015 | Seville | Florbetapir | C | No | Yes | 120 | NA | 0.0285706 |
| Lu K | 2019 | DRC-UK | Florbetapir | C | No | Yes | 502 | 0.2050000 | NA |
| Lu K | 2019 | DRC-UK | Florbetapir | C | Yes | Yes | 502 | NA | 0.1200000 |
| Martikainen IK | 2018 | Finnish Geriatric Intervention Study | PiB | C | No | Yes | 40 | 0.0304178 | NA |
| Martikainen IK | 2018 | Finnish Geriatric Intervention Study | PiB | C | No | Yes | 40 | NA | -0.1323262 |
| McMillan CT | 2016 | PPMI | ab42/ptau/ttau | C | No | Yes | 174 | 0.3727037 | NA |
| McMillan CT | 2016 | PPMI | Ab42 | C | No | Yes | 174 | NA | -0.3465076 |
| Mecca AP | 2017 | Yale | PiB | C | No | Yes | 45 | NA | 0.1270000 |
| Aschenbrenner AJ | 2014 | ADRC | ptau | C | No | Yes | 113 | NA | 0.0250000 |
| Aschenbrenner AJ | 2014 | ADRC | Ab42 | C | No | Yes | 113 | NA | -0.0650000 |
| Aschenbrenner AJ | 2014 | ADRC | PiB | C | No | Yes | 113 | NA | 0.0550000 |
| Berenguer RG | 2014 | Alicante | Ab42 | C | No | No | 39 | NA | 0.3770000 |
| Berenguer RG | 2014 | Alicante | ab42/ptau | C | No | No | 39 | NA | 0.3440000 |
| Besson FL | 2015 | IMAP | 0 | C | No | No | 54 | -0.0504891 | NA |
| Besson FL | 2015 | IMAP | 0 | C | No | No | 54 | NA | -0.1110823 |
| Bilgel M | 2018 | BLSA | PiB | L | Yes | Yes | 127 | NA | 0.3807769 |
| Bilgel M | 2018 | BLSA | PiB | L | Yes | No | 127 | 0.6417183 | NA |
| Casaletto KB | 2017 | Wisconsin ADRC | ptau | C | No | No | 132 | NA | -0.1400000 |
| Casaletto KB | 2017 | Wisconsin ADRC | Ab42 | C | No | No | 132 | NA | 0.0200000 |
| Chatterjee P | 2019 | KARVIAH | Florbetaben | C | No | No | 100 | -0.1245904 | NA |
| Cosentino SA | 2010 | WHICAP | Ab42 | C | No | Yes | 481 | 0.0200000 | NA |
| Cosentino SA | 2010 | WHICAP | Ab43 | L | No | Yes | 481 | 0.0100000 | NA |
| Cosentino SA | 2010 | WHICAP | Ab42 | C | Yes | Yes | 481 | NA | 0.0233333 |
| Cosentino SA | 2010 | WHICAP | Ab42 | L | Yes | Yes | 481 | NA | 0.0200000 |
| Donohue MC | 2017 | ADNI | Florbetapir, PiB | C | No | No | 445 | 0.0398969 | NA |
| Donohue MC | 2017 | ADNI | Florbetapir, PiB | L | Yes | Yes | 445 | 0.0100000 | NA |
| Donohue MC | 2017 | ADNI | Florbetapir, PiB | L | Yes | Yes | 445 | NA | 0.2400000 |
| Doraiswamy PM | 2014 | cohort | Florbetapir | C | No | No | 67 | 0.0693774 | NA |
| Doraiswamy PM | 2014 | cohort | Florbetapir | C | No | No | 67 | NA | 0.2334509 |
| Doraiswamy PM | 2014 | cohort | Florbetapir | L | Yes | Yes | 67 | 0.0941613 | NA |
| Doraiswamy PM | 2014 | cohort | Florbetapir | L | Yes | Yes | 67 | NA | 0.8284213 |
| Dubois B | 2018 | INSIGHT | Florbetapir | C | No | Yes | 318 | 0.1213773 | NA |
| Ecay-Torres M | 2018 | GAP | Ab42 | C | No | Yes | 238 | 0.0010000 | NA |
| Farrell ME | 2017 | DLBS | Florbetapir | L | Yes | No | 123 | NA | 0.8046629 |
| Farrell ME | 2017 | DLBS | Florbetapir | L | Yes | No | 123 | 0.7180338 | NA |
| Farrell ME | 2017 | DLBS | Florbetapir | L | No | No | 123 | 0.1468287 | NA |
| Franzmeier N | 2018 | DELCODE | Florbetapir | C | No | No | 49 | 0.2613050 | NA |
| Franzmeier N | 2018 | DELCODE | Florbetapir | C | No | Yes | 49 | NA | 0.1203751 |
| Gangishetti U | 2018 | Emory, Penn, Washu | Florbetapir | C | No | No | 44 | 0.1008711 | NA |
| Haapalinna F | 2018 | Finland | Ab42 | C | No | No | 57 | NA | 0.2860000 |
| Hamelin L | 2018 | IMABio3 | PiB | L | No | No | 17 | 0.1672821 | NA |
| Hamelin L | 2018 | IMABio3 | PiB | C | No | No | 17 | 0.1396219 | NA |
| Hamelin L | 2018 | IMABio3 | PiB | L | No | No | 17 | NA | 0.2762891 |
| Zhao Y | 2017 | GEM | PiB | C | No | No | 175 | NA | 0.0819069 |
| Yaffe K | 2011 | Healthy ABC | Ab42 | C | No | No | 658 | -0.0323689 | NA |
| Yaffe K | 2011 | Healthy ABC | Ab42 | L | No | No | 658 | -0.1112537 | NA |
| Yaffe K | 2011 | Healthy ABC | ab42/ab40 | C | No | No | 659 | 0.0198521 | NA |
| Yaffe K | 2011 | Healthy ABC | ab42/ab40 | L | No | No | 659 | -0.0800631 | NA |
| Meng Y | 2015 | Peking | APL1b28 | C | No | No | 35 | 0.0250556 | NA |
| Merrill DA | 2013 | UCLA | FDDNP | C | No | Yes | 75 | 0.7240669 | NA |
| Merrill DA | 2013 | UCLA | FDDNP | C | No | Yes | 75 | NA | 0.6506007 |
| Mielke MM | 2017 | MCSA | PiB | L | Yes | Yes | 115 | NA | 0.0058281 |
| Mielke MM | 2017 | MCSA | PiB | L | Yes | Yes | 115 | 0.0116555 | NA |
| Mielke MM | 2012 | MCSA | PiB | C | No | Yes | 483 | -0.0270166 | NA |
| Mielke MM | 2012 | MCSA | PiB | C | No | Yes | 483 | NA | -0.0220700 |
| Mok VC | 2016 | Hong Kong | PiB | C | No | Yes | 75 | 0.1400470 | NA |
| Mok VC | 2016 | Hong Kong | PiB | L | No | Yes | 53 | 0.0726713 | NA |
| Mok VC | 2016 | Hong Kong | PiB | L | No | Yes | 53 | 0.1850980 | NA |
| Mok VC | 2016 | Hong Kong | PiB | L | No | Yes | 53 | 0.3220456 | NA |
| Molinuevo JL | 2014 | Barcelona | ab42/ptau/ttau | C | No | Yes | 38 | 0.1724884 | NA |
| Molinuevo JL | 2014 | Barcelona | ab42/ptau/ttau | C | No | Yes | 38 | NA | 0.0722052 |
| Moon YS | 2011 | Korean | ab42 | C | No | Yes | 123 | 0.2500000 | NA |
| Mueller SG | 2018 | UCSF | Florbetapir | C | No | No | 51 | 0.1524001 | NA |
| Mueller SG | 2018 | UCSF | Florbetapir | C | No | No | 51 | NA | 0.0639220 |
| Mukaetova-Ladinska EB | 2018 | Leicester | ptau-181 | C | No | Yes | 26 | 0.0000000 | NA |
| Nakamura A | 2018 | MULNIAD | PiB | C | No | Yes | 38 | -0.0189523 | NA |
| Nakamura A | 2018 | MULNIAD | PiB | C | No | Yes | 38 | NA | -0.0141493 |
| Nebes RD | 2013 | PITT | PiB | C | No | Yes | 71 | NA | 0.1295316 |
| Ossenkoppele R | 2013 | BACS | PiB | C | No | Yes | 81 | 0.0572249 | NA |
| Ossenkoppele R | 2013 | BACS | PiB | C | No | Yes | 81 | NA | 0.0833677 |
| Ossenkoppele R | 2013 | BACS | PiB | C | No | Yes | 81 | -0.2292357 | NA |
| Palmqvist S | 2014 | BioFINDER | Flutemetamol | C | No | Yes | 118 | 0.3200000 | NA |
| Palmqvist S | 2014 | BioFINDER | Flutemetamol | C | No | Yes | 118 | NA | 0.2800000 |
| Hammers DB | 2017 | Utah | Flutemetamol | C | No | Yes | 27 | NA | 0.3002590 |
| Hammers DB | 2017 | Utah | Flutemetamol | C | No | Yes | 27 | 0.1912685 | NA |
| Hanseeuw BJ | 2017 | HABS | PiB | L | No | No | 277 | 0.1777283 | NA |
| Hanseeuw BJ | 2017 | HABS | PiB | L | No | No | 277 | NA | -0.0411176 |
| Hanseeuw BJ | 2017 | HABS | PiB | C | No | No | 277 | 0.1317225 | NA |
| Hanseeuw BJ | 2017 | HABS | PiB | C | No | No | 277 | NA | 0.0337453 |
| Harrington KD | 2018 | AIBL | Florbetapir, PiB, FDDNP | C | No | No | 494 | 0.0829341 | NA |
| Harrington KD | 2018 | AIBL | Florbetapir, PiB, FDDNP | C | No | Yes | 494 | NA | 0.1105152 |
| Harrington MG | 2013 | Pasadena | ab42/ttau | C | No | No | 46 | NA | -0.0663486 |
| Jacobs HIL | 2018 | HABS | PiB | C | No | Yes | 256 | 0.0759581 | NA |
| Jacobs HIL | 2018 | HABS | PiB | C | No | Yes | 256 | NA | -0.0011623 |
| Tolboom | 2009 | Amsterdam | PiB | C | No | Yes | 13 | 0.7500000 | NA |
| Tolboom | 2009 | Amsterdam | FDDNP | C | No | Yes | 13 | 0.3900000 | NA |
| Schott JM | 2010 | ADNI | Ab42 | C | No | Yes | 105 | 0.1331823 | NA |
| Schott JM | 2010 | ADNI | Ab42 | C | No | Yes | 105 | NA | -0.0303373 |
| Lim YY | 2018 | AIBL | Florbetapir, PiB, FDDNP | C | No | No | 447 | 0.2093804 | NA |
| Lim YY | 2018 | AIBL | Florbetapir, PiB, FDDNP | L | Yes | Yes | 447 | NA | 0.1505543 |
# stargazer(
# newtab,
# summary = FALSE,
# single.row = TRUE,
# no.space = TRUE,
# digits = 2,
# column.sep.width = "1pt",
# font.size = "small",
# type = 'text',
# out= "summary.text"
# )
#random-effects-model for r values
#data_global <- subset(data, global_composite ==1)
data$memory_composite <- factor(data$memory_composite,
levels = c(0, 1),
labels = c("", "Memory"))
data$global_composite <- factor(data$global_composite,
levels = c(0, 1),
labels = c("", "Global"))
data$cross_long <- factor(data$cross_long,
levels = c("C", "L"),
labels = c("Baseline", "Followup"))
data$amyloid <- factor(data$amyloid,
levels = c(0, 1),
labels = c("", "Amyloid "))
data$tau <- factor(data$tau,
levels = c(0, 1),
labels = c("", "Tau"))
data$interaction <- factor(data$interaction,
levels = c(0, 1),
labels = c("", "Interaction"))
first <- metacor(
as.numeric(all_r),
#column with r values
#pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
data = data,
n = data$total_nc,
#sample sizes
studlab = paste(author),
# labels for each study
comb.fixed = FALSE,
#Whether to use a fixed-effects model
comb.random = TRUE,
#Whether to use a random-effects model
method.tau = "SJ",
#Which estimator to use for the between-study variance
hakn = TRUE,
#Which estimator to use for the between-study variance
prediction = TRUE,
#Whether to print a prediction interval for the effect of future studies based on present evidence
sm = "ZCOR",
#The summary measure we want to calculate- fisher z
byvar = paste(
memory_composite,
global_composite,
cross_long,
amyloid,
tau
),
#grouping variable
print.byvar = gs("print.byvar")
) #print grouping variable
summary(first, digits = 2, pval=TRUE)
## Number of studies combined: k = 205
##
## COR 95%-CI t p-value
## Random effects model 0.1844 [ 0.1430; 0.2251] 8.65 < 0.0001
## Prediction interval [-0.3689; 0.6413]
##
## Quantifying heterogeneity:
## tau^2 = 0.0842 [0.0645; 0.1032]; tau = 0.2902 [0.2539; 0.3212];
## I^2 = 90.6% [89.5%; 91.5%]; H = 3.25 [3.09; 3.42]
##
## Quantifying residual heterogeneity:
## I^2 = 90.6% [89.5%; 91.5%]; H = 3.25 [3.09; 3.43]
##
## Test of heterogeneity:
## Q d.f. p-value
## 2105.94 199 < 0.0001
##
## Results for subgroups (random effects model):
## k COR 95%-CI tau^2
## byvar = Memory Baseline Amyloid 48 0.1403 [ 0.0543; 0.2242] 0.0780
## byvar = Memory Baseline Amyloid Tau 9 0.1332 [-0.0867; 0.3407] 0.0667
## byvar = Global Baseline Amyloid 61 0.1543 [ 0.0908; 0.2164] 0.0525
## byvar = Global Followup Amyloid 28 0.2570 [ 0.1162; 0.3877] 0.1369
## byvar = Global Baseline Amyloid Tau 10 0.1526 [ 0.0530; 0.2493] 0.0116
## byvar = Global Baseline Tau 8 0.2075 [ 0.0294; 0.3728] 0.0337
## byvar = Memory Followup Amyloid 15 0.3069 [ 0.1007; 0.4878] 0.1350
## byvar = Global Followup Tau 5 0.1308 [-0.0408; 0.2949] 0.0128
## byvar = Global Followup Amyloid Tau 5 0.2812 [-0.3828; 0.7536] 0.3010
## byvar = Memory Baseline Tau 7 0.0982 [-0.1849; 0.3663] 0.0844
## byvar = Memory Followup Tau 3 0.2205 [-0.3714; 0.6850] 0.0472
## byvar = Memory Followup Amyloid Tau 4 0.3371 [-0.5961; 0.8829] 0.4132
## byvar = Followup Amyloid 2 0.2080 [-0.9892; 0.9953] 0.0766
## tau Q I^2
## byvar = Memory Baseline Amyloid 0.2792 354.31 87.3%
## byvar = Memory Baseline Amyloid Tau 0.2583 77.68 89.7%
## byvar = Global Baseline Amyloid 0.2291 391.05 84.9%
## byvar = Global Followup Amyloid 0.3699 472.72 94.3%
## byvar = Global Baseline Amyloid Tau 0.1075 22.87 60.6%
## byvar = Global Baseline Tau 0.1836 26.38 77.3%
## byvar = Memory Followup Amyloid 0.3674 259.23 94.6%
## byvar = Global Followup Tau 0.1133 15.03 73.4%
## byvar = Global Followup Amyloid Tau 0.5486 167.60 97.6%
## byvar = Memory Baseline Tau 0.2905 56.29 91.1%
## byvar = Memory Followup Tau 0.2172 17.77 88.7%
## byvar = Memory Followup Amyloid Tau 0.6428 166.09 98.2%
## byvar = Followup Amyloid 0.2768 6.39 84.3%
##
## Test for subgroup differences (random effects model):
## Q d.f. p-value
## Between groups 6.47 12 0.8905
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
forest(
first,
print.I2.ci = TRUE,
digits.sd = 2,
layout = "subgroup",
#layout = "subgroup",
squaresize = 0.8,
plotwidth = unit(8, "cm"),
fontsize = 5,
addspace = FALSE,
xlab = "Fisher z",
calcwidth.hetstat = TRUE
)
#option 1 -all studies
# fun <- trimfill(first)
# funnel(
# fun,
# pch = ifelse(fun$trimfill, 1, 16),
# level = 0.9,
# comb.random = FALSE
# )
#
# funnel(first,
# main = "Standard Error")
# funnel(first,
# yaxis = "invvar")
# funnel(first,
# yaxis = "size",
# main = "Sampling size",
# title = "hsjs")
#option 2 - only memory-amyloid, yaxis = 1/SE
# data_memory_amyloid <-
# subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1")
# memory_amyloid <-
# cbind(as.numeric(data$all_r), as.numeric(data$weight_se))
# viz_rainforest(memory_amyloid, type = "summary_only", method = "DL")
# viz_funnel(
# memory_amyloid,
# y_axis = "precision",
# contours = TRUE,
# trim_and_fill = TRUE,
# trim_and_fill_side = "left",
# egger = TRUE
# )
#
# #option 3 - only memory-amyloid, yaxis = SE
# viz_funnel(
# memory_amyloid,
# y_axis = "se",
# contours = TRUE,
# trim_and_fill = TRUE,
# trim_and_fill_side = "left",
# egger = TRUE
#
# )
# data <- subset(data_full, table1 == 1, exclude != 0)
# data_memory_amyloid <-
# subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1")
# dat <-
# escalc(
# measure = "ZCOR",
# ri = as.numeric(data_memory_amyloid$all_r),
# ni = as.numeric(data_memory_amyloid$total_nc),
#
# data = data_memory_amyloid
# ) #
#
# # meta-analysis of the transformed correlations
# res <- rma(yi, vi, data = dat, method = "DL", slab=paste(dat$author, dat$year, sep=", "))
# print(res)
#
# # method="DL" = DerSimonian-Laird estimator
# # method="HE" = Hedges estimator
# # method="HS" = Hunter-Schmidt estimator
# # method="SJ" = Sidik-Jonkman estimator
# # method="ML" = maximum-likelihood estimator
# # method="REML" = restricted maximum-likelihood estimator
# # method="EB" = empirical Bayes estimator
# # method="PM" = Paule-Mandel estimator
# # method="GENQ" = generalized Q-statistic estimator
#
# #funnel plot
# funnel(
# res,
# yaxis = "sei",
# #level = c(90, 95, 99),
# #shade = c("white", "gray55", "gray75"),
# #refline = 0,
# #legend = TRUE,
#
#
# label = TRUE,
# studlab = TRUE
# )
# funnel(
# res,
# yaxis = "seinv",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE,
# studlab = TRUE
# )
# funnel(
# res,
# yaxis = "ni",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE,
# studlab = TRUE
# )
# funnel(
# res,
# yaxis = "ninv",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE,
# studlab = TRUE
# )
# funnel(
# res,
# yaxis = "sqrtni",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE,
# studlab = TRUE
# )
# funnel(
# res,
# yaxis = "wi",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE,
# studlab = TRUE
# )
# data_memory_tau <-
# subset(data, table1== "1" & data$memory_composite == "1" & data$tau == "1" & data$amyloid != "1" )
# dat <-
# escalc(
# measure = "ZCOR",
# ri = as.numeric(data_memory_tau$all_r),
# ni = as.numeric(data_memory_tau$total_nc),
# data = data_memory_tau
# ) #
#
# # meta-analysis of the transformed correlations
# res <- rma(yi, vi, data = dat, method = "DL")
# print(res)
#
# # Standard funnel plot (Plot A)
#
#
# funnel(
# res,
# yaxis = "sei",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE,
# slab=paste(dat$author, dat$year, sep=", "),
# label = TRUE
# )
# funnel(
# res,
# yaxis = "seinv",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE,
# label = "all"
# )
# funnel(
# res,
# yaxis = "ni",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE,
# label = "all"
# )
# funnel(
# res,
# yaxis = "ninv",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "sqrtni",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "wi",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE,
# studlab = TRUE
# )
#
#
#
# data_global_amyloid <-
# subset(data, table1== "1" & data$global_composite == "1" & data$amyloid == "1" & data$tau != "1")
# dat <-
# escalc(
# measure = "ZCOR",
# ri = as.numeric(data_global_amyloid$all_r),
# ni = as.numeric(data_global_amyloid$total_nc),
# data = data_global_amyloid
# ) #
#
# # meta-analysis of the transformed correlations
# res <- rma(yi, vi, data = dat, method = "DL")
# print(res)
#
# #funnel plot
# funnel(
# res,
# yaxis = "sei",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "seinv",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "ni",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "ninv",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "sqrtni",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "wi",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# data_global_tau <-
# subset(data, table1== "1" & data$global_composite == "1" & data$tau == "1" & data$amyloid != "1")
# dat <-
# escalc(
# measure = "ZCOR",
# ri = as.numeric(data_global_tau$all_r),
# ni = as.numeric(data_global_tau$total_nc),
# data = data_global_tau
# ) #
#
# # meta-analysis of the transformed correlations
# res <- rma(yi, vi, data = dat, method = "DL")
# print(res)
#
# # Standard funnel plot (Plot A)
#
#
# funnel(
# res,
# yaxis = "sei",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "seinv",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "ni",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "ninv",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "sqrtni",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
# funnel(
# res,
# yaxis = "wi",
# level = c(90, 95, 99),
# shade = c("white", "gray55", "gray75"),
# refline = 0,
# legend = TRUE
# )
#random-effects-model for r values
#data_global <- subset(data, global_composite ==1)
# data$memory_composite <- factor(data$memory_composite,
# levels = c(0, 1),
# labels = c("", "Memory"))
# data$global_composite <- factor(data$global_composite,
# levels = c(0, 1),
# labels = c("", "Global"))
# data$cross_long <- factor(data$cross_long,
# levels = c(1, 2),
# labels = c("Baseline", "Followup"))
# data$amyloid <- factor(data$amyloid,
# levels = c(0, 1),
# labels = c("", "Amyloid "))
# data$tau <- factor(data$tau,
# levels = c(0, 1),
# labels = c("", "Tau"))
# data$interaction <- factor(data$interaction,
# levels = c(0, 1),
# labels = c("", "Interaction"))
# second <- metacor(
# as.numeric(all_r),
# #column with r values
# #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
# data = data,
# n = data$total_nc,
# #sample sizes
# studlab = paste(author),
# # labels for each study
# comb.fixed = FALSE,
# #Whether to use a fixed-effects model
# comb.random = TRUE,
# #Whether to use a random-effects model
# method.tau = "SJ",
# #Which estimator to use for the between-study variance
# hakn = TRUE,
# #Which estimator to use for the between-study variance
# prediction = TRUE,
# #Whether to print a prediction interval for the effect of future studies based on present evidence
# sm = "ZCOR",
# #The summary measure we want to calculate- fisher z
# byvar = paste(
# memory_composite,
# global_composite,
# cross_long,
# method
# ),
# #grouping variable
# print.byvar = gs("print.byvar")
# ) #print grouping variable
#
# print(second, digits = 2)
data <- subset(data_full, table1 == 1, exclude != 0)
data_memory_amyloid <-
subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1" & data$cross_long == "C" )
MA <- metacor(
as.numeric(all_r),
#column with r values
#pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
data = data_memory_amyloid,
n = data_memory_amyloid$total_nc,
#sample sizes
studlab = paste(author),
# labels for each study
comb.fixed = FALSE,
#Whether to use a fixed-effects model
comb.random = TRUE,
#Whether to use a random-effects model
method.tau = "SJ",
#Which estimator to use for the between-study variance
hakn = TRUE,
#Which estimator to use for the between-study variance
prediction = TRUE,
#Whether to print a prediction interval for the effect of future studies based on present evidence
sm = "ZCOR"
#The summary measure we want to calculate- fisher z
#grouping variable
) #print grouping variable
summary(MA, digits = 2, pval=TRUE)
## Number of studies combined: k = 48
##
## COR 95%-CI t p-value
## Random effects model 0.1403 [ 0.0543; 0.2242] 3.27 0.0020
## Prediction interval [-0.4033; 0.6107]
##
## Quantifying heterogeneity:
## tau^2 = 0.0780 [0.0462; 0.1295]; tau = 0.2792 [0.2149; 0.3599];
## I^2 = 87.3% [83.9%; 90.0%]; H = 2.81 [2.49; 3.16]
##
## Test of heterogeneity:
## Q d.f. p-value
## 354.31 45 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
MA,
yaxis= "se",
legend = TRUE,
main = "Standard Error",
studlab = TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour
## [1] "#808080" "#B3B3B3" "#E6E6E6"
Timmers T doi: 10.1016/j.pdpdt.2019.04.022 , Amsterdam, 107 NC , Florbetepan - checked Merrill DA doi: 10.3233/JAD-121903, 75 NC, FRS, FDDNP - checked Liguori doi: 10.1093/sleep/zsx011, 50 NC with, 35 with obstructuve sleep apnea, CSF ab42 - checked
data <- subset(data_full, table1 == 1, exclude != 0)
data_memory_amyloidL <-
subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1" & data$cross_long == "L")
MAL <- metacor(
as.numeric(all_r),
#column with r values
#pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
data = data_memory_amyloidL,
n = data_memory_amyloidL$total_nc,
#sample sizes
studlab = paste(author),
# labels for each study
comb.fixed = FALSE,
#Whether to use a fixed-effects model
comb.random = TRUE,
#Whether to use a random-effects model
method.tau = "SJ",
#Which estimator to use for the between-study variance
hakn = TRUE,
#Which estimator to use for the between-study variance
prediction = TRUE,
#Whether to print a prediction interval for the effect of future studies based on present evidence
sm = "ZCOR"
#The summary measure we want to calculate- fisher z
#grouping variable
) #print grouping variable
summary(MAL, digits = 2, pval=TRUE)
## Number of studies combined: k = 15
##
## COR 95%-CI t p-value
## Random effects model 0.3069 [ 0.1007; 0.4878] 3.15 0.0071
## Prediction interval [-0.4668; 0.8145]
##
## Quantifying heterogeneity:
## tau^2 = 0.1350 [0.0676; 0.3510]; tau = 0.3674 [0.2600; 0.5924];
## I^2 = 94.6% [92.5%; 96.1%]; H = 4.30 [3.66; 5.06]
##
## Test of heterogeneity:
## Q d.f. p-value
## 259.23 14 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
MAL,
yaxis= "se",
legend = TRUE,
main = "Standard Error",
studlab = TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour
## [1] "#808080" "#B3B3B3" "#E6E6E6"
Doraiswamy Florbetapir F, 69 NC 18 Farrel Timmers T doi: 10.1016/j.pdpdt.2019.04.022 , Amsterdam, 107 NC , Florbetepan - checked van Harten Bilgen
data <- subset(data_full, table1 == 1, exclude != 0)
data_memory_tau <-
subset(data, table1== "1" & data$memory_composite == "1" & data$tau == "1" & data$amyloid != "1" & data$cross_long == "C")
MT <- metacor(
as.numeric(all_r),
#column with r values
#pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
data = data_memory_tau ,
n = data_memory_tau $total_nc,
#sample sizes
studlab = paste(author),
# labels for each study
comb.fixed = FALSE,
#Whether to use a fixed-effects model
comb.random = TRUE,
#Whether to use a random-effects model
method.tau = "SJ",
#Which estimator to use for the between-study variance
hakn = TRUE,
#Which estimator to use for the between-study variance
prediction = TRUE,
#Whether to print a prediction interval for the effect of future studies based on present evidence
sm = "ZCOR"
#The summary measure we want to calculate- fisher z
#grouping variable
) #print grouping variable
summary(MT, digits = 2, pval=TRUE)
## Number of studies combined: k = 7
##
## COR 95%-CI t p-value
## Random effects model 0.0982 [-0.1849; 0.3663] 0.84 0.4310
## Prediction interval [-0.6084; 0.7179]
##
## Quantifying heterogeneity:
## tau^2 = 0.0844 [0.0276; 0.5597]; tau = 0.2905 [0.1662; 0.7481];
## I^2 = 91.1% [83.4%; 95.2%]; H = 3.36 [2.46; 4.58]
##
## Test of heterogeneity:
## Q d.f. p-value
## 56.29 5 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
MT,
yaxis= "se",
legend = TRUE,
main = "Standard Error",
studlab = TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour
## [1] "#808080" "#B3B3B3" "#E6E6E6"
data <- subset(data_full, table1 == 1, exclude != 0)
data_memory_tauL <-
subset(data, table1== "1" & data$memory_composite == "1" & data$tau == "1" & data$amyloid != "1" & data$cross_long == "L")
MTL <- metacor(
as.numeric(all_r),
#column with r values
#pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
data = data_memory_tauL ,
n = data_memory_tauL$total_nc,
#sample sizes
studlab = paste(author),
# labels for each study
comb.fixed = FALSE,
#Whether to use a fixed-effects model
comb.random = TRUE,
#Whether to use a random-effects model
method.tau = "SJ",
#Which estimator to use for the between-study variance
hakn = TRUE,
#Which estimator to use for the between-study variance
prediction = TRUE,
#Whether to print a prediction interval for the effect of future studies based on present evidence
sm = "ZCOR"
#The summary measure we want to calculate- fisher z
#grouping variable
) #print grouping variable
summary(MTL, digits = 2, pval=TRUE)
## Number of studies combined: k = 3
##
## COR 95%-CI t p-value
## Random effects model 0.2205 [-0.3714; 0.6850] 1.57 0.2569
## Prediction interval [-0.9958; 0.9983]
##
## Quantifying heterogeneity:
## tau^2 = 0.0472 [0.0086; 2.1927]; tau = 0.2172 [0.0929; 1.4808];
## I^2 = 88.7% [69.0%; 95.9%]; H = 2.98 [1.80; 4.95]
##
## Test of heterogeneity:
## Q d.f. p-value
## 17.77 2 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
MTL,
yaxis= "se",
legend = TRUE,
main = "Standard Error",
studlab = TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour
## [1] "#808080" "#B3B3B3" "#E6E6E6"
data <- subset(data_full, table1 == 1, exclude != 0)
data_global_amyloid <-
subset(data, table1== "1" & data$global_composite == "1" & data$amyloid == "1" & data$tau != "1" & data$cross_long == "C")
GA <- metacor(
as.numeric(all_r),
#column with r values
#pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
data = data_global_amyloid,
n = data_global_amyloid$total_nc,
#sample sizes
studlab = paste(author),
# labels for each study
comb.fixed = FALSE,
#Whether to use a fixed-effects model
comb.random = TRUE,
#Whether to use a random-effects model
method.tau = "SJ",
#Which estimator to use for the between-study variance
hakn = TRUE,
#Which estimator to use for the between-study variance
prediction = TRUE,
#Whether to print a prediction interval for the effect of future studies based on present evidence
sm = "ZCOR"
#The summary measure we want to calculate- fisher z
#grouping variable
) #print grouping variable
summary(GA, digits = 2, pval=TRUE)
## Number of studies combined: k = 61
##
## COR 95%-CI t p-value
## Random effects model 0.1543 [ 0.0908; 0.2164] 4.83 < 0.0001
## Prediction interval [-0.2981; 0.5500]
##
## Quantifying heterogeneity:
## tau^2 = 0.0525 [0.0315; 0.0807]; tau = 0.2291 [0.1775; 0.2840];
## I^2 = 84.9% [81.3%; 87.8%]; H = 2.57 [2.31; 2.87]
##
## Test of heterogeneity:
## Q d.f. p-value
## 391.05 59 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
GA,
yaxis= "se",
legend = TRUE,
main = "Standard Error",
studlab = TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour
## [1] "#808080" "#B3B3B3" "#E6E6E6"
data <- subset(data_full, table1 == 1, exclude != 0)
data_global_amyloidL <-
subset(data, table1== "1" & data$global_composite == "1" & data$amyloid == "1" & data$tau != "1" & data$cross_long == "L")
GAL <- metacor(
as.numeric(all_r),
#column with r values
#pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
data = data_global_amyloidL,
n = data_global_amyloidL$total_nc,
#sample sizes
studlab = paste(author),
# labels for each study
comb.fixed = FALSE,
#Whether to use a fixed-effects model
comb.random = TRUE,
#Whether to use a random-effects model
method.tau = "SJ",
#Which estimator to use for the between-study variance
hakn = TRUE,
#Which estimator to use for the between-study variance
prediction = TRUE,
#Whether to print a prediction interval for the effect of future studies based on present evidence
sm = "ZCOR"
#The summary measure we want to calculate- fisher z
#grouping variable
) #print grouping variable
summary(GAL, digits = 2, pval=TRUE)
## Number of studies combined: k = 28
##
## COR 95%-CI t p-value
## Random effects model 0.2570 [ 0.1162; 0.3877] 3.69 0.0010
## Prediction interval [-0.4711; 0.7768]
##
## Quantifying heterogeneity:
## tau^2 = 0.1369 [0.0691; 0.2721]; tau = 0.3699 [0.2629; 0.5216];
## I^2 = 94.3% [92.7%; 95.5%]; H = 4.18 [3.71; 4.72]
##
## Test of heterogeneity:
## Q d.f. p-value
## 472.72 27 < 0.0001
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
GAL,
yaxis= "se",
legend = TRUE,
main = "Standard Error",
studlab = TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour
## [1] "#808080" "#B3B3B3" "#E6E6E6"
data <- subset(data_full, table1 == 1, exclude != 0)
data_global_tau <-
subset(data, table1== "1" & data$global_composite == "1" & data$tau == "1" & data$amyloid != "1" & data$cross_long == "C")
GT <- metacor(
as.numeric(all_r),
#column with r values
#pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
data = data_global_tau,
n = data_global_tau$total_nc,
#sample sizes
studlab = paste(author),
# labels for each study
comb.fixed = FALSE,
#Whether to use a fixed-effects model
comb.random = TRUE,
#Whether to use a random-effects model
method.tau = "SJ",
#Which estimator to use for the between-study variance
hakn = TRUE,
#Which estimator to use for the between-study variance
prediction = TRUE,
#Whether to print a prediction interval for the effect of future studies based on present evidence
sm = "ZCOR"
#The summary measure we want to calculate- fisher z
#grouping variable
) #print grouping variable
summary(GT, digits = 2, pval=TRUE)
## Number of studies combined: k = 8
##
## COR 95%-CI t p-value
## Random effects model 0.2075 [ 0.0294; 0.3728] 2.75 0.0286
## Prediction interval [-0.2695; 0.6027]
##
## Quantifying heterogeneity:
## tau^2 = 0.0337 [0.0066; 0.2157]; tau = 0.1836 [0.0811; 0.4644];
## I^2 = 77.3% [52.6%; 89.1%]; H = 2.10 [1.45; 3.03]
##
## Test of heterogeneity:
## Q d.f. p-value
## 26.38 6 0.0002
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
GT,
yaxis= "se",
legend = TRUE,
main = "Standard Error",
studlab = TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour
## [1] "#808080" "#B3B3B3" "#E6E6E6"
data <- subset(data_full, table1 == 1, exclude != 0)
data_global_tauL <-
subset(data, table1== "1" & data$global_composite == "1" & data$tau == "1" & data$amyloid != "1" & data$cross_long == "L")
GTL <- metacor(
as.numeric(all_r),
#column with r values
#pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
data = data_global_tauL,
n = data_global_tauL$total_nc,
#sample sizes
studlab = paste(author),
# labels for each study
comb.fixed = FALSE,
#Whether to use a fixed-effects model
comb.random = TRUE,
#Whether to use a random-effects model
method.tau = "SJ",
#Which estimator to use for the between-study variance
hakn = TRUE,
#Which estimator to use for the between-study variance
prediction = TRUE,
#Whether to print a prediction interval for the effect of future studies based on present evidence
sm = "ZCOR"
#The summary measure we want to calculate- fisher z
#grouping variable
) #print grouping variable
summary(GTL, digits = 2, pval=TRUE)
## Number of studies combined: k = 5
##
## COR 95%-CI t p-value
## Random effects model 0.1308 [-0.0408; 0.2949] 2.12 0.1015
## Prediction interval [-0.2725; 0.4950]
##
## Quantifying heterogeneity:
## tau^2 = 0.0128 [0.0015; 0.1398]; tau = 0.1133 [0.0392; 0.3739];
## I^2 = 73.4% [33.6%; 89.3%]; H = 1.94 [1.23; 3.06]
##
## Test of heterogeneity:
## Q d.f. p-value
## 15.03 4 0.0046
##
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations
funnel(
GTL,
yaxis= "se",
legend = TRUE,
#main = "Standard Error",
studlab = TRUE,
level=0.95, contour=c(0.9, 0.95, 0.99))$col.contour
## [1] "#808080" "#B3B3B3" "#E6E6E6"