Carregar a base

load("C:/Users/roberta.bastos/Desktop/Base_de_dados-master/CARROS.RData")

Transformar as variáveis

CARROS$Tipodecombustivel<-ifelse(CARROS$Tipodecombustivel==0,"Gas","Alc")
CARROS$TipodeMarcha<-ifelse(CARROS$TipodeMarcha==0,"Auto","Manual")

Análise exploratória

O boxplot 1

boxplot(CARROS$Preco ~ CARROS$Tipodecombustivel,horizontal = T,
        col=c("red","blue"),main="O boxplot 1",
        xlab = "Preço do carro",
        ylab = "Tipo de combustívrel")

O boxplot 2

boxplot(CARROS$Kmporlitro ~ CARROS$Tipodecombustivel,horizontal = T,
        col=c("red","blue"),main="O boxplot 2",
        xlab = "km/l do carro",
        ylab = "Tipo de combustívrel")

O boxplot 3

boxplot(CARROS$HP ~ CARROS$TipodeMarcha,horizontal = T,
        col=c("green","yellow"),main="O boxplot 3",
        xlab = "HP do carro",
        ylab = "Tipo de marcha")

Duas variáveis quantitativas

library(psych)
describeBy(Preco ~Tipodecombustivel, data = CARROS)
## 
##  Descriptive statistics by group 
## Tipodecombustivel: Alc
##    vars  n   mean    sd median trimmed   mad  min max range skew kurtosis    se
## X1    1 14 132.46 56.89 120.55  127.11 61.82 71.1 258 186.9  0.8    -0.49 15.21
## ------------------------------------------------------------ 
## Tipodecombustivel: Gas
##    vars  n   mean     sd median trimmed   mad   min max range  skew kurtosis
## X1    1 18 307.15 106.77    311  308.52 72.65 120.3 472 351.7 -0.26    -1.06
##       se
## X1 25.16
describeBy(Kmporlitro ~Tipodecombustivel, data = CARROS)
## 
##  Descriptive statistics by group 
## Tipodecombustivel: Alc
##    vars  n  mean   sd median trimmed mad  min  max range skew kurtosis   se
## X1    1 14 24.56 5.38   22.8   24.34   6 17.8 33.9  16.1 0.41     -1.4 1.44
## ------------------------------------------------------------ 
## Tipodecombustivel: Gas
##    vars  n  mean   sd median trimmed  mad  min max range skew kurtosis   se
## X1    1 18 16.62 3.86  15.65   16.42 2.97 10.4  26  15.6 0.48    -0.05 0.91
describeBy(HP ~Tipodecombustivel, data = CARROS)
## 
##  Descriptive statistics by group 
## Tipodecombustivel: Alc
##    vars  n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 14 91.36 24.42     96      92 32.62  52 123    71 -0.24    -1.61 6.53
## ------------------------------------------------------------ 
## Tipodecombustivel: Gas
##    vars  n   mean    sd median trimmed   mad min max range skew kurtosis    se
## X1    1 18 189.72 60.28    180  186.81 48.18  91 335   244 0.45    -0.15 14.21
describeBy(Preco ~TipodeMarcha, data = CARROS)
## 
##  Descriptive statistics by group 
## TipodeMarcha: Auto
##    vars  n   mean     sd median trimmed    mad   min max range skew kurtosis
## X1    1 19 290.38 110.17  275.8  289.71 124.83 120.1 472 351.9 0.05    -1.26
##       se
## X1 25.28
## ------------------------------------------------------------ 
## TipodeMarcha: Manual
##    vars  n   mean   sd median trimmed   mad  min max range skew kurtosis    se
## X1    1 13 143.53 87.2  120.3  131.25 58.86 71.1 351 279.9 1.33      0.4 24.19
describeBy(Kmporlitro ~TipodeMarcha, data = CARROS)
## 
##  Descriptive statistics by group 
## TipodeMarcha: Auto
##    vars  n  mean   sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 19 17.15 3.83   17.3   17.12 3.11 10.4 24.4    14 0.01     -0.8 0.88
## ------------------------------------------------------------ 
## TipodeMarcha: Manual
##    vars  n  mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 13 24.39 6.17   22.8   24.38 6.67  15 33.9  18.9 0.05    -1.46 1.71
describeBy(HP ~TipodeMarcha, data = CARROS)
## 
##  Descriptive statistics by group 
## TipodeMarcha: Auto
##    vars  n   mean    sd median trimmed  mad min max range  skew kurtosis    se
## X1    1 19 160.26 53.91    175  161.06 77.1  62 245   183 -0.01    -1.21 12.37
## ------------------------------------------------------------ 
## TipodeMarcha: Manual
##    vars  n   mean    sd median trimmed   mad min max range skew kurtosis    se
## X1    1 13 126.85 84.06    109  114.73 63.75  52 335   283 1.36     0.56 23.31

Análise por tipo de combinação

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
CARROS %>% group_by(TipodeMarcha) %>%
  select(Preco) %>%
  summarise(media=mean(Preco))
## Adding missing grouping variables: `TipodeMarcha`
## # A tibble: 2 x 2
##   TipodeMarcha media
## * <chr>        <dbl>
## 1 Auto          290.
## 2 Manual        144.
CARROS %>% group_by(TipodeMarcha)%>% 
  select(Preco) %>%
  summarise(media=mean(Preco))
## Adding missing grouping variables: `TipodeMarcha`
## # A tibble: 2 x 2
##   TipodeMarcha media
## * <chr>        <dbl>
## 1 Auto          290.
## 2 Manual        144.
CARROS %>% group_by(TipodeMarcha) %>%
  select(Preco,Kmporlitro) %>%
  summarise(media_preco=mean(Preco),media_kml=mean(Kmporlitro))
## Adding missing grouping variables: `TipodeMarcha`
## # A tibble: 2 x 3
##   TipodeMarcha media_preco media_kml
## * <chr>              <dbl>     <dbl>
## 1 Auto                290.      17.1
## 2 Manual              144.      24.4
Tabela_resumo<-CARROS %>% group_by(TipodeMarcha) %>%
  select(Preco,Kmporlitro) %>%
  summarise(media_preco=mean(Preco),media_kml=mean(Kmporlitro))
## Adding missing grouping variables: `TipodeMarcha`
CARROS %>%
  group_by(TipodeMarcha) %>%
  select(Tipodecombustivel) %>%
  table()
## Adding missing grouping variables: `TipodeMarcha`
##             Tipodecombustivel
## TipodeMarcha Alc Gas
##       Auto     7  12
##       Manual   7   6
CARROS %>%
  filter(Tipodecombustivel=="Gas") %>%
  group_by(TipodeMarcha) %>%
  select(HP) %>%
  summarise(media=mean(HP),n=n())
## Adding missing grouping variables: `TipodeMarcha`
## # A tibble: 2 x 3
##   TipodeMarcha media     n
## * <chr>        <dbl> <int>
## 1 Auto          194.    12
## 2 Manual        181.     6
Tabela_resumo
## # A tibble: 2 x 3
##   TipodeMarcha media_preco media_kml
## * <chr>              <dbl>     <dbl>
## 1 Auto                290.      17.1
## 2 Manual              144.      24.4

Variações de boxplots

graf2<-boxplot(CARROS$Kmporlitro ~ CARROS$Tipodecombustivel,horizontal = T,
        col=c("red","blue"),main="O boxplot 2",
        xlab = "km/l do carro",
        ylab = "Tipo de combustívrel")

graf3<-boxplot(CARROS$HP ~ CARROS$TipodeMarcha,horizontal = T,
        col=c("green","yellow"),main="O boxplot 3",
        xlab = "HP do carro",
        ylab = "Tipo de marcha")

par(mfrow=c(2,1))
graf2
## $stats
##      [,1]  [,2]
## [1,] 17.8 10.40
## [2,] 21.4 14.70
## [3,] 22.8 15.65
## [4,] 30.4 19.20
## [5,] 33.9 21.00
## 
## $n
## [1] 14 18
## 
## $conf
##          [,1]     [,2]
## [1,] 18.99955 13.97416
## [2,] 26.60045 17.32584
## 
## $out
## [1] 26
## 
## $group
## [1] 2
## 
## $names
## [1] "Alc" "Gas"
graf3
## $stats
##       [,1] [,2]
## [1,]  62.0   52
## [2,] 116.5   66
## [3,] 175.0  109
## [4,] 192.5  113
## [5,] 245.0  175
## 
## $n
## [1] 19 13
## 
## $conf
##          [,1]      [,2]
## [1,] 147.4518  88.40398
## [2,] 202.5482 129.59602
## 
## $out
## [1] 264 335
## 
## $group
## [1] 2 2
## 
## $names
## [1] "Auto"   "Manual"

Gráficos de dispersão - Duas variáveis quantitativas

plot(CARROS$HP,CARROS$Preco)
abline(lsfit(CARROS$HP,CARROS$Preco),col="darkred")

cor(CARROS$HP,CARROS$Preco)
## [1] 0.7909486
plot(CARROS$HP,CARROS$Kmporlitro,pch=19,col="red",
     xlab = "HP",
     ylab = "Km/l",
     main = "diagrama de dispersão")
abline(lsfit(CARROS$HP,CARROS$Kmporlitro),
       col="blue")

cor(CARROS$Kmporlitro,CARROS$HP)
## [1] -0.7761684
plot(CARROS$Amperagem_circ_eletrico,CARROS$RPM,pch=19,col="red",
     xlab = "Amperagem circ eletrico",
     ylab = "RPM",
     main = "diagrama de dispersão")
abline(lsfit(CARROS$Amperagem_circ_eletrico,CARROS$RPM),
       col="blue")

cor(CARROS$Amperagem_circ_eletrico,CARROS$RPM)
## [1] 0.09120476

Matriz de correlação das variáveis quantitativas

names(CARROS)
##  [1] "Kmporlitro"              "Cilindros"              
##  [3] "Preco"                   "HP"                     
##  [5] "Amperagem_circ_eletrico" "Peso"                   
##  [7] "RPM"                     "Tipodecombustivel"      
##  [9] "TipodeMarcha"            "NumdeMarchas"           
## [11] "NumdeValvulas"
variaveis_quanti<-c("Kmporlitro","Preco","HP","Peso","RPM")
CARROS[,variaveis_quanti]
##                     Kmporlitro Preco  HP  Peso   RPM
## Mazda RX4                 21.0 160.0 110 2.620 16.46
## Mazda RX4 Wag             21.0 160.0 110 2.875 17.02
## Datsun 710                22.8 108.0  93 2.320 18.61
## Hornet 4 Drive            21.4 258.0 110 3.215 19.44
## Hornet Sportabout         18.7 360.0 175 3.440 17.02
## Valiant                   18.1 225.0 105 3.460 20.22
## Duster 360                14.3 360.0 245 3.570 15.84
## Merc 240D                 24.4 146.7  62 3.190 20.00
## Merc 230                  22.8 140.8  95 3.150 22.90
## Merc 280                  19.2 167.6 123 3.440 18.30
## Merc 280C                 17.8 167.6 123 3.440 18.90
## Merc 450SE                16.4 275.8 180 4.070 17.40
## Merc 450SL                17.3 275.8 180 3.730 17.60
## Merc 450SLC               15.2 275.8 180 3.780 18.00
## Cadillac Fleetwood        10.4 472.0 205 5.250 17.98
## Lincoln Continental       10.4 460.0 215 5.424 17.82
## Chrysler Imperial         14.7 440.0 230 5.345 17.42
## Fiat 128                  32.4  78.7  66 2.200 19.47
## Honda Civic               30.4  75.7  52 1.615 18.52
## Toyota Corolla            33.9  71.1  65 1.835 19.90
## Toyota Corona             21.5 120.1  97 2.465 20.01
## Dodge Challenger          15.5 318.0 150 3.520 16.87
## AMC Javelin               15.2 304.0 150 3.435 17.30
## Camaro Z28                13.3 350.0 245 3.840 15.41
## Pontiac Firebird          19.2 400.0 175 3.845 17.05
## Fiat X1-9                 27.3  79.0  66 1.935 18.90
## Porsche 914-2             26.0 120.3  91 2.140 16.70
## Lotus Europa              30.4  95.1 113 1.513 16.90
## Ford Pantera L            15.8 351.0 264 3.170 14.50
## Ferrari Dino              19.7 145.0 175 2.770 15.50
## Maserati Bora             15.0 301.0 335 3.570 14.60
## Volvo 142E                21.4 121.0 109 2.780 18.60
cor(CARROS[,variaveis_quanti])
##            Kmporlitro      Preco         HP       Peso        RPM
## Kmporlitro  1.0000000 -0.8475514 -0.7761684 -0.8676594  0.4186840
## Preco      -0.8475514  1.0000000  0.7909486  0.8879799 -0.4336979
## HP         -0.7761684  0.7909486  1.0000000  0.6587479 -0.7082234
## Peso       -0.8676594  0.8879799  0.6587479  1.0000000 -0.1747159
## RPM         0.4186840 -0.4336979 -0.7082234 -0.1747159  1.0000000
library(corrplot)
## corrplot 0.84 loaded
correlacao_carros<-cor(CARROS[,variaveis_quanti])
correlacao_carros
##            Kmporlitro      Preco         HP       Peso        RPM
## Kmporlitro  1.0000000 -0.8475514 -0.7761684 -0.8676594  0.4186840
## Preco      -0.8475514  1.0000000  0.7909486  0.8879799 -0.4336979
## HP         -0.7761684  0.7909486  1.0000000  0.6587479 -0.7082234
## Peso       -0.8676594  0.8879799  0.6587479  1.0000000 -0.1747159
## RPM         0.4186840 -0.4336979 -0.7082234 -0.1747159  1.0000000
par(mfrow=c(1,1))
corrplot(correlacao_carros)

corrplot(correlacao_carros,method = "square")

corrplot(correlacao_carros,method = "pie")

corrplot.mixed(correlacao_carros)

colnames(CARROS)[5]<-"ACE"