pacman:: p_load(tidyverse, zoo,lubridate)
df <- airquality
str(df)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
mean(df$Temp)
## [1] 77.88235
mean(df[,4])
## [1] 77.88235
median(df$Temp)
## [1] 79
sd(df$Wind)
## [1] 3.523001
var(df$Wind)
## [1] 12.41154
df$Month[df$Month == 5]<- "May"
df$Month[df$Month == 6]<- "June"
df$Month[df$Month == 7]<- "July"
df$Month[df$Month == 8]<- "August"
df$Month[df$Month == 9]<- "September"
str(df)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : chr "May" "May" "May" "May" ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
summary(df)
## Ozone Solar.R Wind Temp
## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
## Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
## NA's :37 NA's :7
## Month Day
## Length:153 Min. : 1.0
## Class :character 1st Qu.: 8.0
## Mode :character Median :16.0
## Mean :15.8
## 3rd Qu.:23.0
## Max. :31.0
##
Reorder the Months so they do not default to alphabetical
df$Month<-factor(df$Month, levels=c("May", "June","July", "August", "September"))
Qplot stands for “Quick-Plot” (in the ggplot2 package)
p1 <- qplot(data = df,Wind,fill = Month,geom = "histogram", bins = 10)
p1
ggplot is more sophisticated than qplot, but still uses ggplot2 package
Reorder the legend so that it is not the default (alphabetical), but rather in order that months come
Outline the bars in white using the color = “white” command
p2 <- df%>%
ggplot(aes(x=Wind, fill=Month)) +
geom_histogram (position="identity", alpha=10, binwidth = 2, color = "white")+
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
#lines(density(df$Wind),lwd = 4, col = "red"))
p2
fill=Month command fills each boxplot with a different color in the aesthetics
scale_fill_discrete makes the legend on the side for discrete color values
p3 <- df %>%
ggplot(aes(Month, Wind, fill = Month)) +
ggtitle( "Wind Speed") +
xlab("Months") +
ylab("Velocity") +
geom_boxplot() +
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3
Use the scale_fill_grey command for the grey-scale legend, and again, use fill=Month in the aesthetics
p4 <- df %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Temperatures") +
xlab("Temperatures") +
ylab("Frequency") +
geom_boxplot()+
scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4
this can only be archived if we set the arg to FALSE, because we are more interested in density than frequency. Density can give us the probability density of Temperature reaching a certain level
hist(df$Temp, freq = FALSE, main = "Temperature Histogram", xlab = "Temperature", ylab= "Temperature Density", las = 1, col = c("pink", "green"))
#Adding Density Curve to Histogram
hist(df$Temp, freq = FALSE, main = "Temperature Histogram", xlab = "Temperature", ylab= "Temperature Density", las = 1, col = c("pink", "green"))
#the following statement draws a density curve
lines(density(df$Temp), lwd = 4, col = "red")