$$
library(Matrix)
library(pracma)
##
## Attaching package: 'pracma'
## The following objects are masked from 'package:Matrix':
##
## expm, lu, tril, triu
A<-matrix(c(1,0,0,0,2,2,1,6,3,4,-2,-17,4,7,1,-23), nrow=4)
#show the reduced row echelon form
rref(A)
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
#So there are 4 pivots so rank=4
# Or use r
rankMatrix(A)
## [1] 4
## attr(,"method")
## [1] "tolNorm2"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
## [1] 8.881784e-16
So Rank is 4. ____________________________________________________ (2) Given an mxn matrix where m > n, what can be the maximum rank?
The maximum rank can be the smallest dimension==>n
The minimum rank, assuming that the matrix is non-zero? The minimum rank of a non-zero matrix =1. ___________________________________________________ (3) What is the rank of matrix B?
$$ \[\begin{bmatrix}{} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \\ \end{bmatrix}\]$$
B<-matrix(c(1,3,2,2,6,4,1,3,2),nrow=3)
rref(B)
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 0 0 0
## [3,] 0 0 0
# from reduced row echelon form we see 1 pivot so
#rank=1
#From rankMatrix function, rank is 1
rankMatrix(B)
## [1] 1
## attr(,"method")
## [1] "tolNorm2"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
## [1] 6.661338e-16
\[ \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5\\ 0 & 0 & 6\\ \end{bmatrix} \] Need
\[\det (\lambda I-A)=0\] Using Rule of Sarrus: \[\begin{vmatrix} \lambda-1 & -2 & -3 & \lambda-1 & -2\\ 0 & \lambda-4 & -5 & 0 & \lambda-4 \\ 0 & 0 & \lambda-6 & 0 &0 \\ \end{vmatrix} \]
\[ \begin{align*} (\lambda-1 ) (\lambda-4 ) (\lambda-6 ) = 0\\ \end{align*} \]
Characteristic polynomial with roots: 1, 4, 6
Now compute eigen vectors, so start with
\(\lambda=1\) \[\begin{bmatrix} \lambda-1 & -2 & -3 \\ 0 & \lambda-4 & -5 \\ 0 & 0 & \lambda-6 \\ \end{bmatrix} \] \(\lambda=1\)
\[\begin{bmatrix} 0 & -2 & -3 \\ 0 & -3 & -5 \\ 0 & 0 & -5 \\ \end{bmatrix} \]
$$
\[\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix}\] \[\begin{bmatrix} v1 \\ v2 \\ v3 \\ \end{bmatrix}\]$$
so \[ \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix} \]
we still have eigenvalues 4,6.
Use r function Compute all Eigenvectors that correspond to eigenvalues……
Using r to compute Eigenvector, eigenvalue,characteristic polynomial:
A<-matrix(c(1,0,0,2,4,0,3,5,6),nrow=3)
eigen(A)
## eigen() decomposition
## $values
## [1] 6 4 1
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0
charpoly(A)
## [1] 1 -11 34 -24
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.