year 1: Plant IWG in fall
year 2: IWG establishes, is harveseted once for grain
year 3 + 4: IWG is treated as a forage
how should we manage the IWG in years 3 and 4?
when should we harvest?
how many times should we harvest?
02 08 2021
year 1: Plant IWG in fall
year 2: IWG establishes, is harveseted once for grain
year 3 + 4: IWG is treated as a forage
how should we manage the IWG in years 3 and 4?
when should we harvest?
how many times should we harvest?
| Site | Planted | Data collected |
|---|---|---|
| I2 | 2011 | 2017 |
| R70 | 2015 | 2017-2018 |
| R100 | 2016 | 2018-2019 |
null hypothesis testing
regression
car::Anova(lmer(yield.1cut~follow.cut*timing.1cut+
(1|site:block)+
(1|env),
data=subset(dat1, field.year=="second")))
## Analysis of Deviance Table (Type II Wald chisquare tests) ## ## Response: yield.1cut ## Chisq Df Pr(>Chisq) ## follow.cut 0.3972 2 0.8199 ## timing.1cut 48.9246 2 2.378e-11 *** ## follow.cut:timing.1cut 1.1413 4 0.8877 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(lmer(RFQ.1cut~follow.cut*timing.1cut+
(1|site:block)+
(1|env),
data=subset(dat1, field.year=="second")))
## Analysis of Deviance Table (Type II Wald chisquare tests) ## ## Response: RFQ.1cut ## Chisq Df Pr(>Chisq) ## follow.cut 0.5249 2 0.7692 ## timing.1cut 165.1329 2 <2e-16 *** ## follow.cut:timing.1cut 6.2227 4 0.1831 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(lmer(RFQ.2cut~follow.cut*timing.1cut+
(1|block),
data=subset(dat1, env=="R100.2019" & follow.cut!="none")))
## Analysis of Deviance Table (Type II Wald chisquare tests) ## ## Response: RFQ.2cut ## Chisq Df Pr(>Chisq) ## follow.cut 0.0577 1 0.81022 ## timing.1cut 5.8500 2 0.05367 . ## follow.cut:timing.1cut 0.2704 2 0.87355 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
car::Anova(lmer(RFQ.2cut~year*follow.cut+
(1|block),
data=subset(dat1, site=="R100" & follow.cut!="none")))
## Analysis of Deviance Table (Type II Wald chisquare tests) ## ## Response: RFQ.2cut ## Chisq Df Pr(>Chisq) ## year 1.1689 1 0.2796 ## follow.cut 0.3024 1 0.5824 ## year:follow.cut 0.1136 1 0.7361
| dataset | yield.1cut | rfq.1cut | .2cut | .3cut |
|---|---|---|---|---|
| R70.2018+R100.2019 | ns | ns | ||
| R100.2019 | ns |
Second year datasets do not find differences among follow.cut treatment levels due to the follow.cut treatments applied in the first year.
no carryover effect from years observed
car::Anova(glmer(RFQ.3cut~timing.1cut +
(1|env) + (1|site:block),
data=dat3,
family=Gamma(link="log")))
## Analysis of Deviance Table (Type II Wald chisquare tests) ## ## Response: RFQ.3cut ## Chisq Df Pr(>Chisq) ## timing.1cut 0.8397 2 0.6571
## Analysis of Deviance Table (Type II Wald chisquare tests) ## ## Response: return.total ## Chisq Df Pr(>Chisq) ## treatment 35.862 8 1.861e-05 *** ## year 16.007 2 0.0003343 *** ## treatment:year 107.818 16 1.164e-15 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## year = 2017: ## treatment emmean SE df lower.CL upper.CL .group ## AO 16.6 79.2 33.2 -144.5 178 1 ## BO 32.3 79.2 33.2 -128.8 193 1 ## DO 96.1 79.2 33.2 -65.0 257 12 ## AS 101.4 79.2 33.2 -59.7 262 12 ## DS 194.3 79.2 33.2 33.2 355 12 ## AN 214.8 79.2 33.2 53.7 376 12 ## DN 304.2 79.2 33.2 143.1 465 12 ## BS 338.8 79.2 33.2 177.7 500 23 ## BN 609.5 79.2 33.2 448.4 771 3 ## ## year = 2018: ## treatment emmean SE df lower.CL upper.CL .group ## AO 135.4 79.2 33.2 -25.7 297 1 ## BO 149.2 79.2 33.2 -11.9 310 12 ## BN 236.3 79.2 33.2 75.2 397 123 ## BS 272.4 79.2 33.2 111.3 433 123 ## AS 311.4 79.2 33.2 150.3 473 123 ## AN 316.3 79.2 33.2 155.2 477 123 ## DO 321.8 79.2 33.2 160.7 483 123 ## DS 433.4 79.2 33.2 272.3 594 23 ## DN 451.8 79.2 33.2 290.7 613 3 ## ## year = 2019: ## treatment emmean SE df lower.CL upper.CL .group ## DO 217.5 88.0 43.7 40.0 395 1 ## BN 263.4 79.2 33.2 102.3 424 1 ## BO 264.9 79.2 33.2 103.8 426 1 ## DS 294.4 79.2 33.2 133.3 455 12 ## DN 323.8 79.2 33.2 162.7 485 12 ## BS 369.6 79.2 33.2 208.5 531 12 ## AN 564.8 79.2 33.2 403.7 726 23 ## AO 580.1 79.2 33.2 419.0 741 23 ## AS 696.3 79.2 33.2 535.2 857 3 ## ## Degrees-of-freedom method: kenward-roger ## Confidence level used: 0.95 ## P value adjustment: tukey method for comparing a family of 9 estimates ## significance level used: alpha = 0.05