#load brfss
library(car)
## Loading required package: carData
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(questionr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tableone)

load(url("https://github.com/coreysparks/data/blob/master/brfss_2017.Rdata?raw=true"))
View(brfss_17)
##Fix variables

nams<-names(brfss_17)
head(nams, n=10)
##  [1] "dispcode" "statere1" "safetime" "hhadult"  "genhlth"  "physhlth"
##  [7] "menthlth" "poorhlth" "hlthpln1" "persdoc2"
newnames<-tolower(gsub(pattern = "_",replacement =  "",x =  nams))
names(brfss_17)<-newnames
##Filter Texas
brfss_17$tx<-NA
brfss_17$tx[grep(pattern = "TX", brfss_17$mmsaname)]<-1

##Remove Non-Responses 
brfss_17<-brfss_17%>%
  filter(tx==1, is.na(mmsawt)==F, is.na(hlthpln1)==F)

Recoding of variables

Be sure to always check your codebooks!

#I will be using e-cigarette smoking(ECIGARET)
#recode 
brfss_17$ecigaret<-Recode(brfss_17$ecigaret, recodes ="7:9=NA; 1=1;2=0")

Define a binary outcome variable of your choosing and define how you recode the original variable.

##The binary outcome i chose was ECIGARET
##THE VARIABLE NAME CHANGED TO CIG AND 7:9 ARE NOW NA, WHILE 1 IS RECODED AS 1 TO MEAN YES THEY ARE E-CIGERATE SMOKERS WHILE 2=0 MEANS NO THEY ARE NOT SMOKERS

State a research question about what factors you believe will affect your outcome variable.

##How do exercise and e-cigaretteS affect ones health?

Define at least 2 predictor variables, based on your research question. For this assignment, it’s best if these are categorical variables.

##The predictor variables are exercise and sex
##I would like to see if males or females that exercise are more prone to use e-cigarettes

Perform a descriptive analysis of the outcome variable by each of the variables you defined in part b. (e.g. 2 x 2 table, 2 x k table). Follow a similar approach to presenting your statistics as presented in Sparks 2009 (in the Google drive). This can be done easily using the tableone package!

##Recode
##Exercise
brfss_17$exerany2<-Recode(brfss_17$exerany2, recodes ="7:9=NA; 1=1;2=0")
na.omit(brfss_17$exerany2)
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1
##   [75] 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
##  [112] 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0
##  [149] 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1
##  [186] 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
##  [223] 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1
##  [260] 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1
##  [297] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0
##  [334] 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1
##  [371] 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0
##  [408] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1
##  [445] 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1
##  [519] 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1
##  [593] 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1
##  [630] 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1
##  [667] 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
##  [704] 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0
##  [741] 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1
##  [778] 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1
##  [815] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0
##  [852] 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0
##  [889] 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
##  [926] 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1
##  [963] 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1
## [1000] 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1
## [1037] 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1
## [1074] 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1
## [1111] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1
## [1148] 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1
## [1185] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [1222] 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
## [1259] 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0
## [1296] 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1
## [1333] 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1
## [1370] 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1
## [1407] 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1
## [1444] 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1
## [1481] 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1
## [1518] 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1
## [1555] 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0
## [1592] 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1
## [1629] 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
## [1666] 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1
## [1703] 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1
## [1740] 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1
## [1777] 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1
## [1814] 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1
## [1851] 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1
## [1888] 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0
## [1925] 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0
## [1962] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [1999] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1
## [2036] 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1
## [2073] 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0
## [2110] 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1
## [2147] 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1
## [2184] 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1
## [2221] 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1
## [2258] 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1
## [2295] 1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0
## [2332] 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1
## [2369] 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1
## [2406] 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 1
## [2443] 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0
## [2480] 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0
## [2517] 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0
## [2554] 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
## [2591] 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1
## [2628] 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1
## [2665] 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1
## [2702] 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0
## [2739] 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1
## [2776] 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0
## [2813] 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1
## [2850] 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0
## [2887] 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1
## [2924] 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1
## [2961] 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 1
## [2998] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1
## [3035] 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1
## [3072] 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1
## [3109] 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1
## [3146] 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1
## [3183] 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
## [3220] 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0
## [3257] 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0
## [3294] 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0
## [3331] 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0
## [3368] 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1
## [3405] 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1
## [3442] 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1
## [3479] 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1
## [3516] 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0
## [3553] 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0
## [3590] 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1
## [3627] 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1
## [3664] 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0
## [3701] 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 0 1
## [3738] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [3775] 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0
## [3812] 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1
## [3849] 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1
## [3886] 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1
## [3923] 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0
## [3960] 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0
## [3997] 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0
## [4034] 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1
## [4071] 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0
## [4108] 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0
## [4145] 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
## [4182] 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1
## [4219] 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [4256] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1
## [4293] 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1
## [4330] 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0
## [4367] 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 1
## [4404] 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [4441] 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1
## [4478] 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1
## [4515] 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1
## [4552] 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1
## [4589] 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1
## [4626] 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0
## [4663] 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1
## [4700] 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0
## [4737] 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1
## [4774] 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1
## [4811] 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1
## [4848] 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1
## [4885] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
## [4922] 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1
## [4959] 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [4996] 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1
## [5033] 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1
## [5070] 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1
## [5107] 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1
## [5144] 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0
## [5181] 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0
## [5218] 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1
## [5255] 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0
## [5292] 0 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1
## [5329] 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1
## [5366] 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1
## [5403] 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1
## [5440] 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0
## [5477] 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1
## [5514] 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0
## [5551] 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1
## [5588] 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0
## [5625] 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1
## [5662] 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0
## [5699] 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0
## [5736] 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1
## [5773] 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0
## [5810] 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0
## [5847] 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0
## [5884] 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1
## [5921] 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1
## [5958] 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1
## [5995] 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1
## [6032] 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1
## [6069] 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1
## [6106] 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
## [6143] 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1
## [6180] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1
## [6217] 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1
## [6254] 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1
## [6291] 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1
## [6328] 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1
## [6365] 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1
## [6402] 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1
## [6439] 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0
## [6476] 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1
## [6513] 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1
## [6550] 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0
## [6587] 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1
## [6624] 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 0
## [6661] 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1
## [6698] 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1
## [6735] 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1
## [6772] 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
## [6809] 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0
## [6846] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0
## [6883] 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1
## [6920] 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1
## [6957] 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0
## [6994] 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1
## [7031] 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0
## [7068] 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1
## [7105] 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0
## [7142] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1
## [7179] 0 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1
## [7216] 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1
## [7253] 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1
## [7290] 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1
## [7327] 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1
## [7364] 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [7401] 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1
## [7438] 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1
## [7475] 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1
## [7512] 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1
## [7549] 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1
## [7586] 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 0
## [7623] 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0
## [7660] 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1
## [7697] 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0
## [7734] 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1
## [7771] 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1
## [7808] 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1
## [7845] 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1
## attr(,"na.action")
##   [1]   36   38   88  180  182  191  202  230  252  256  257  300  306  319  327
##  [16]  331  332  337  347  360  403  405  416  421  427  434  442  448  490  494
##  [31]  501  504  526  547  561  564  572  579  598  628  660  686  715  733  754
##  [46]  758  770  776  785  790  811  813  825  864  881  889  900  903  904  916
##  [61]  918  925  927  950  952  965  980  997 1010 1012 1029 1033 1034 1039 1044
##  [76] 1062 1081 1103 1111 1113 1126 1133 1160 1176 1191 1201 1202 1206 1220 1229
##  [91] 1236 1240 1245 1246 1257 1274 1277 1278 1301 1305 1316 1324 1328 1334 1366
## [106] 1400 1419 1420 1457 1459 1461 1470 1476 1478 1486 1492 1504 1519 1522 1543
## [121] 1550 1582 1584 1610 1650 1685 1715 1724 1753 1780 1781 1782 1802 1806 1808
## [136] 1817 1821 1830 1840 1864 1908 1915 1936 1940 1948 1960 1961 1973 1986 1993
## [151] 2027 2044 2053 2063 2079 2084 2099 2105 2114 2122 2131 2135 2138 2158 2184
## [166] 2188 2200 2203 2216 2224 2230 2237 2286 2297 2305 2359 2422 2424 2426 2445
## [181] 2453 2472 2486 2518 2524 2528 2530 2532 2554 2576 2580 2617 2631 2632 2634
## [196] 2639 2647 2663 2672 2684 2699 2702 2705 2706 2710 2712 2713 2726 2731 2742
## [211] 2745 2751 2758 2759 2769 2770 2776 2785 2788 2798 2809 2829 2841 2845 2848
## [226] 2850 2851 2871 2884 2888 2901 2907 2939 2940 2950 2980 2983 2986 2989 2990
## [241] 3013 3018 3019 3036 3053 3054 3058 3072 3095 3102 3113 3121 3134 3139 3168
## [256] 3179 3185 3205 3226 3247 3258 3260 3279 3292 3297 3334 3370 3388 3389 3393
## [271] 3402 3471 3481 3499 3518 3523 3524 3526 3528 3553 3562 3607 3660 3666 3677
## [286] 3685 3715 3738 3739 3741 3743 3750 3752 3762 3772 3782 3804 3825 3827 3828
## [301] 3832 3840 3871 3885 3895 3899 3910 3916 3922 3924 3925 3950 3973 3974 3983
## [316] 3986 3989 4000 4007 4009 4012 4031 4045 4050 4071 4086 4088 4089 4091 4113
## [331] 4124 4127 4172 4179 4199 4209 4217 4228 4258 4270 4277 4279 4325 4329 4332
## [346] 4340 4352 4353 4375 4394 4397 4410 4412 4416 4417 4434 4440 4447 4454 4461
## [361] 4471 4501 4502 4507 4514 4518 4524 4538 4561 4574 4582 4586 4591 4599 4612
## [376] 4649 4655 4658 4673 4709 4734 4735 4768 4777 4802 4804 4815 4825 4849 4871
## [391] 4879 4883 4897 4914 4919 4942 4947 4956 4957 4961 4963 4969 4996 5006 5030
## [406] 5045 5049 5066 5073 5077 5078 5088 5094 5101 5102 5105 5108 5114 5115 5118
## [421] 5128 5139 5156 5173 5197 5198 5201 5214 5220 5228 5236 5244 5252 5262 5271
## [436] 5275 5276 5279 5287 5296 5301 5307 5309 5315 5321 5329 5339 5341 5356 5364
## [451] 5385 5413 5423 5433 5441 5446 5462 5476 5481 5482 5488 5492 5512 5556 5562
## [466] 5568 5572 5613 5633 5643 5644 5685 5695 5699 5700 5725 5736 5750 5757 5774
## [481] 5800 5819 5820 5828 5844 5850 5877 5883 5919 5920 5929 5945 5957 5971 5993
## [496] 5999 6015 6026 6040 6046 6086 6091 6102 6104 6111 6115 6119 6121 6168 6185
## [511] 6192 6204 6221 6223 6233 6242 6249 6271 6303 6313 6315 6316 6337 6402 6424
## [526] 6429 6432 6441 6449 6473 6480 6484 6489 6497 6508 6510 6519 6520 6523 6531
## [541] 6542 6552 6557 6593 6595 6598 6600 6610 6619 6621 6652 6656 6698 6699 6706
## [556] 6711 6713 6716 6720 6738 6747 6758 6763 6769 6777 6785 6790 6800 6801 6805
## [571] 6812 6821 6846 6858 6864 6870 6876 6888 6889 6895 6903 6912 6927 6928 6931
## [586] 6932 6934 6938 6942 6951 6952 6954 6958 6964 6968 6969 6972 6973 6986 6996
## [601] 7001 7005 7015 7017 7027 7036 7048 7050 7051 7079 7082 7087 7097 7100 7106
## [616] 7126 7128 7137 7159 7167 7176 7187 7195 7200 7208 7213 7225 7236 7237 7240
## [631] 7246 7249 7252 7261 7276 7286 7294 7303 7323 7338 7342 7344 7347 7362 7365
## [646] 7374 7380 7385 7389 7394 7399 7403 7405 7409 7410 7418 7427 7439 7458 7489
## [661] 7499 7500 7512 7514 7531 7546 7574 7581 7598 7604 7605 7625 7653 7664 7675
## [676] 7711 7718 7777 7783 7800 7811 7857 7863 7869 7876 7882 7884 7891 7895 7905
## [691] 7922 7937 7940 7942 7944 7949 7953 7956 7959 7963 7973 7978 7985 7991 7996
## [706] 8010 8012 8014 8017 8018 8021 8054 8055 8065 8072 8076 8078 8081 8105 8112
## [721] 8130 8134 8135 8185 8215 8217 8220 8225 8226 8230 8235 8237 8262 8287 8306
## [736] 8314 8329 8376 8390 8396 8405 8406 8429 8457 8464 8468 8470 8475 8513 8524
## [751] 8526 8531 8534 8544 8547 8565 8575 8604 8607 8613 8625
## attr(,"class")
## [1] "omit"
##Sex code 1
brfss_17$sex<-as.factor(ifelse(brfss_17$sex==1, "Male", "Female"))

##choose only TX
brfss_17$tx<-NA
brfss_17$tx[grep(pattern = "TX", brfss_17$mmsaname)]<-1

##Raw frequencies;un weighted data

##Exercise
table(brfss_17$ecigaret, brfss_17$exerany2)
##    
##        0    1
##   0 1959 4750
##   1  340  801
##column percentages
prop.table(table(brfss_17$ecigaret, brfss_17$exerany2), margin=2)
##    
##             0         1
##   0 0.8521096 0.8557017
##   1 0.1478904 0.1442983
##basic chi square test of independence 
chisq.test(table(brfss_17$ecigaret, brfss_17$exerany2))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(brfss_17$ecigaret, brfss_17$exerany2)
## X-squared = 0.14118, df = 1, p-value = 0.7071
##Sex
table(brfss_17$ecigaret, brfss_17$sex)
##    
##     Female Male
##   0   4154 2827
##   1    613  584
##column percentages
prop.table(table(brfss_17$ecigaret, brfss_17$sex), margin=2)
##    
##        Female      Male
##   0 0.8714076 0.8287892
##   1 0.1285924 0.1712108
##basic chi square test of independence 
chisq.test(table(brfss_17$ecigaret, brfss_17$sex))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(brfss_17$ecigaret, brfss_17$sex)
## X-squared = 28.564, df = 1, p-value = 9.066e-08
##Using table one
t1<-CreateTableOne(vars = c("exerany2", "sex"), strata = "ecigaret", test = T, data = brfss_17)
#t1<-print(t1, format="p")
print(t1,format="p")
##                       Stratified by ecigaret
##                        0           1           p      test
##   n                    6981        1197                   
##   exerany2 (mean (SD)) 0.71 (0.45) 0.70 (0.46)  0.681     
##   sex = Male (%)       40.5        48.8        <0.001

Calculate descriptive statistics (mean or percentages) for each variable using no weights or survey design, as well as with full survey design and weights.

#survey design
des<-svydesign(ids=~1, strata=~ststr, weights=~mmsawt, data = brfss_17 )
##Exercise
#counts
cat<-wtd.table(brfss_17$ecigaret, brfss_17$exerany2, weights = brfss_17$mmsawt)

#proportions
prop.table(wtd.table(brfss_17$ecigaret, brfss_17$exerany2, weights = brfss_17$mmsawt), margin=2)
##           0         1
## 0 0.8151963 0.7934441
## 1 0.1848037 0.2065559
#compare that with the original, unweighted proportions
prop.table(table(brfss_17$ecigaret, brfss_17$exerany2), margin=2)
##    
##             0         1
##   0 0.8521096 0.8557017
##   1 0.1478904 0.1442983
##Sex
#counts
cat<-wtd.table(brfss_17$ecigaret, brfss_17$sex, weights = brfss_17$mmsawt)

#proportions
prop.table(wtd.table(brfss_17$ecigaret, brfss_17$sex, weights = brfss_17$mmsawt), margin=2)
##      Female      Male
## 0 0.8258119 0.7765149
## 1 0.1741881 0.2234851
#compare that with the original, unweighted proportions
prop.table(table(brfss_17$ecigaret, brfss_17$sex), margin=2)
##    
##        Female      Male
##   0 0.8714076 0.8287892
##   1 0.1285924 0.1712108

Calculate percentages, or means, for each of your independent variables for each level of your outcome variable and present this in a table, with appropriate survey-corrected test statistics. (tableone package helps)

library(tableone)
#survey design
des<-svydesign(ids=~1, strata=~ststr, weights=~mmsawt, data = brfss_17)
#not using survey design
options(survey.lonely.psu = "adjust")
st1<-svyCreateTableOne(vars = c("exerany2", "sex"), strata = "ecigaret", test = T, data = des)
st1<-print(st1, format="p")
##                       Stratified by ecigaret
##                        0                  1                 p      test
##   n                    11542277.85        2851551.68                   
##   exerany2 (mean (SD))        0.70 (0.46)       0.73 (0.45)  0.297     
##   sex = Male (%)              47.0              54.7         0.010

Are there substantive differences in the descriptive results between the analysis using survey design and that not using survey design?

##Yes there are substantial differences when using survey design and not using survey design as seen above