In writing up the key variables data, Self-rated proficiency (SRF)/toeic we could say (use this as a model for regression results):
SRP is a significant predictor of toeic scores. b = 46.067, CI 95% = [39.10485, 53.0292], t(596) = 12.99, p < .001. The intercept was 306.953 (so, with an increase of 1 SRP score, we see a toeic increase of 46.067). SRP scores also explained a significant proportion of variance in toeic scores. F(1, 596) = 168.9, p < 0.05. The effect size was small size; adjusted r squared = 0.2195, CI = [0.1625678, 0.2793126].
***
Studentsβ years in university (ie: first year, second year and third year) significantly predicted TOEIC score. Using 1-way ANOVA, we found F(2, 595)=95.94, p<0.001. Between years one and three, we found a cohenβs d of 1.8 (large size) and a Pearsonβs r of 0.65 (medium size?). Between years two and three, cohenβs d = 0.93 with an r of 0.37.
| Year | n | mean | sd | median | se |
|---|---|---|---|---|---|
| 1 | 183 | 434.86 | 98.5 | 450 | 7.28 |
| 2 | 319 | 531.17 | 139.22 | 515 | 7.8 |
| 3 | 96 | 669.17 | 174.84 | 700 | 17.84 |
##
## Call:
## lm(formula = TOEIC ~ Year, data = collapseYear)
##
## Residuals:
## Min 1Q Median 3Q Max
## -439.17 -84.86 -6.17 77.81 403.83
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 434.858 9.975 43.595 < 2e-16 ***
## Year2 96.314 12.513 7.697 5.82e-14 ***
## Year3 234.309 17.005 13.779 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 134.9 on 595 degrees of freedom
## (227 observations deleted due to missingness)
## Multiple R-squared: 0.2438, Adjusted R-squared: 0.2413
## F-statistic: 95.94 on 2 and 595 DF, p-value: < 2.2e-16
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = TOEIC ~ Year, data = collapseYear)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2 - 1 == 0 96.31 12.51 7.697 <1e-10 ***
## 3 - 1 == 0 234.31 17.00 13.779 <1e-10 ***
## 3 - 2 == 0 137.99 15.71 8.785 <1e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Confidence Intervals
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = TOEIC ~ Year, data = collapseYear)
##
## Quantile = 2.3408
## 95% family-wise confidence level
##
##
## Linear Hypotheses:
## Estimate lwr upr
## 2 - 1 == 0 96.3145 67.0243 125.6047
## 3 - 1 == 0 234.3087 194.5043 274.1132
## 3 - 2 == 0 137.9943 101.2251 174.7635
##
## Pairwise comparisons using t tests with pooled SD
##
## data: collapseYear$TOEIC and collapseYear$Year
##
## 1 2
## 2 1.7e-13 -
## 3 < 2e-16 < 2e-16
##
## P value adjustment method: bonferroni
2 sample T-Test: T-test showed that there was a significant difference in TOEIC scores (M=between students who didnβt (M = 511.67 SE = 6.78) and those who left contact details (M=586.8 SE=15.89). This difference was significant; difference in means = -75.08 [-109.256 -40.904], t(133.28)= -4.3453, p < 0.001. Effect size was a medium size r=0.35.
| Contact Details | n | mean | sd | median | se |
|---|---|---|---|---|---|
| 0 | 501 | 511.67 | 151.77 | 500 | 6.78 |
| 1 | 97 | 586.75 | 156.52 | 550 | 15.89 |
***
A growth mindset predicted TOEIC scores. Using regression analysis we found b= 3.0440 [1.508349, 4.579743], t(596) = 3.893, p = .00011 F(1, 596)=15.15, p<0.001, effect size r sq=0.02316, [0.005303419, 0.05261701]. Intercept was 404.2477
***
Fixed mindsets however was not significant. Intercept of 565.1311; b = -1.378, [-3.213, 0.456], t = -1.476 p = 0.141 F(1, 596)=2.177, p=0.14. Effect size r squared = .002 [0.0, 0.01546194]
***
Looking at the relationship between students who left an email, and their Self-rated proficiency, we used a 2 sample t-test and found a difference of means between the two groups of -0.794, [-1.116 -0.472], t(140.3)= -4.875, p<0.001, effect size r = 0.38 (medium size).
(I have to explain why the t statistic is a decimal point, no??) - You can explain that it is a Welchβs t-test, which is used when the two samples have unequal variance, and this gives the particular df outcome. Your groups are very unbalanced in size. You should look at the possible consequences of this for the analysis
| Contact Details | mean | n | sd | median | se |
|---|---|---|---|---|---|
| 0 | 4.542 | 715 | 1.507 | 4.5714 | 0.056 |
| 1 | 5.336 | 110 | 1.602 | 5.4286 | 0.153 |
***
Growth mindset predicted Self-rated proficiency. Intercept: 3.335; b = 0.034, [0.021 0.046] t = 5.273, p < .001; F(1, 823)=27.8, p<0.001. r squared = 0.032 [0.01252844, 0.05954831]
The regression results for fixed mindsets and SRP however were not significant. Intercept = 4.788154, b= -0.005 CI[-0.020 0.010], t = -0.608 p = .543, F(1, 823)=0.3699; p=0.54; adjusted r squared= -0.001 [0, 0.9]
***
For students who attended cram school, an approximate measure of the hours they likely attended was calculated. The following results are only for those who attended cram school. The results look to be almost totally random, wonder if the calculation you used made any sense?
The regression results for estimated hours of cram school attendance and Growth Mindset total were not significant. Intercept = 39.07713, b = -0.0004 CI[-0.005, 0.004], t = -0.189 p = .85, F(1, 599)=0.03568 p = .85; adjusted r squared = -0.00161; unable to obtain a CI for this.
For students who attended cram school, an approximate measure of the hours they likely attended was calculated. The following results are only for those who attended cram school. The results look to be almost totally random, wonder if the calculation you used made any sense?
The regression results for estimated hours of cram school attendance and Fixed Mindset total were not significant. Intercept = 30.1822, b = -0.0006 CI[-0.004, 0.003], t = -0.336 p = .737, F(1, 599)=0.1126 p = .73; adjusted r squared = -0.001481 - cannot calculate a CI for this
In contrasting what year students are in and their growth mindsets, we used a 1 way ANOVA and found F(2, 822)=0.6458; p=0.52; (year 1&3): d=0.09; r=0.04; (year 2&3): d=0.01; r=0.01. So, although growth mindset increases year by year it did not appear significant.
| Year | n | mean | sd | median | se |
|---|---|---|---|---|---|
| 1 | 313 | 38.56 | 8.2 | 39 | 0.46 |
| 2 | 400 | 39.21 | 8.25 | 40 | 0.41 |
| 3 | 112 | 39.31 | 8.64 | 41 | 0.82 |
##
## Call:
## lm(formula = Total.growth ~ Year, data = collapseYear)
##
## Residuals:
## Min 1Q Median 3Q Max
## -30.2125 -5.2125 0.6875 5.7875 15.4377
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.5623 0.4682 82.369 <2e-16 ***
## Year2 0.6502 0.6251 1.040 0.299
## Year3 0.7502 0.9120 0.823 0.411
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.283 on 822 degrees of freedom
## Multiple R-squared: 0.001569, Adjusted R-squared: -0.0008603
## F-statistic: 0.6458 on 2 and 822 DF, p-value: 0.5245
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = Total.growth ~ Year, data = collapseYear)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2 - 1 == 0 0.6502 0.6250 1.040 0.546
## 3 - 1 == 0 0.7502 0.9120 0.823 0.685
## 3 - 2 == 0 0.1000 0.8855 0.113 0.993
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Confidence Intervals
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = Total.growth ~ Year, data = collapseYear)
##
## Quantile = 2.3355
## 95% family-wise confidence level
##
##
## Linear Hypotheses:
## Estimate lwr upr
## 2 - 1 == 0 0.6502 -0.8096 2.1100
## 3 - 1 == 0 0.7502 -1.3797 2.8801
## 3 - 2 == 0 0.1000 -1.9680 2.1680
##
## Pairwise comparisons using t tests with pooled SD
##
## data: collapseYear$Total.growth and collapseYear$Year
##
## 1 2
## 2 0.9 -
## 3 1.0 1.0
##
## P value adjustment method: bonferroni
However, the rate at which fixed mindsets decreased did appear significant. F(2, 822)=4.213; p=0.015; ES(year 1&3): d=-0.3; r=-0.13; ES(year 2&3): d=-0.29; r=-0.12.
***
| Year | n | mean | sd | median | se |
|---|---|---|---|---|---|
| 1 | 313 | 30.27 | 7.03 | 31 | 0.4 |
| 2 | 400 | 30.24 | 6.98 | 30 | 0.35 |
| 3 | 112 | 28.2 | 6.88 | 27 | 0.65 |
##
## Call:
## lm(formula = Total.fixed ~ Year, data = collapseYear)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.2425 -5.1964 -0.2425 4.7575 22.7575
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30.27476 0.39477 76.690 < 2e-16 ***
## Year2 -0.03226 0.52705 -0.061 0.95121
## Year3 -2.07833 0.76900 -2.703 0.00702 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.984 on 822 degrees of freedom
## Multiple R-squared: 0.01015, Adjusted R-squared: 0.007739
## F-statistic: 4.213 on 2 and 822 DF, p-value: 0.01512
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = Total.fixed ~ Year, data = collapseYear)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2 - 1 == 0 -0.03226 0.52705 -0.061 0.9979
## 3 - 1 == 0 -2.07833 0.76900 -2.703 0.0186 *
## 3 - 2 == 0 -2.04607 0.74663 -2.740 0.0166 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Confidence Intervals
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = Total.fixed ~ Year, data = collapseYear)
##
## Quantile = 2.3367
## 95% family-wise confidence level
##
##
## Linear Hypotheses:
## Estimate lwr upr
## 2 - 1 == 0 -0.03226 -1.26381 1.19929
## 3 - 1 == 0 -2.07833 -3.87523 -0.28144
## 3 - 2 == 0 -2.04607 -3.79071 -0.30143
##
## Pairwise comparisons using t tests with pooled SD
##
## data: collapseYear$Total.fixed and collapseYear$Year
##
## 1 2
## 2 1.000 -
## 3 0.021 0.019
##
## P value adjustment method: bonferroni
It was predicted that Students with a higher growth mindset would leave email. Using a 2-sample t-test we found: difference in means: -2.017 CI[-3.7135, -0.3200], t(143.09) = -2.35, p = 0.02, r = 0.193
| Contact Details | n | mean | sd | median | se |
|---|---|---|---|---|---|
| 0 | 715 | 38.71 | 8.23 | 39 | 0.31 |
| 1 | 110 | 40.73 | 8.4 | 41.5 | 0.8 |
***
However there seemed to be a very small relationship between fixed mindsets and those who left contact addresses. mean difference = 1.35804 [-0.098, 2.814], t(141.96)= 1.844; p = 0.067; ES(r)=0.153 (very small size)
| Contact Details | n | mean | sd | median | se |
|---|---|---|---|---|---|
| 0 | 715 | 30.16 | 6.97 | 30 | 0.26 |
| 1 | 110 | 28.8 | 7.22 | 29 | 0.69 |
Using Spearman rank correlation we found a relationship between growth and fixed mindsets, however it seemed quite small. r = -0.33 (quite low, neg. cor.) (check coloured pie chart for one-to-one detail; polychoric correlation coefficients reported).
The regression results for TOEIC Score and estimated hours of Juku were not statistically significant. Intercept = 506.51, b= 0.05, CI[-0.04, 0.14], t = -1.05 p = .294, F(1, 437)=1.103; p = .29; adjusted r squared= -0.0002 cannot calculate CI for effect size
The regression results for Self-rated proficiency and estimated hours of Cram School were not statistically significant. Intercept = 4.57, b = 0.0004, CI[-0.0004 0.0012], t = 0.901 p = .368, F(1, 599) = .81; p = .3678; adjusted r squared= -0.0003129 cannot calculate CI for effect size
##
##
## Table 1
##
## Regression results using collapseYear$TOEIC as the criterion
##
##
## Predictor b b_95%_CI beta beta_95%_CI sr2
## (Intercept) 404.25** [342.67, 465.83]
## collapseYear$Total.growth 3.04** [1.51, 4.58] 0.16 [0.08, 0.24] .02
##
##
##
## sr2_95%_CI r Fit
##
## [.01, .05] .16**
## R2 = .025**
## 95% CI[.01,.05]
##
##
## Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant.
## b represents unstandardized regression weights. beta indicates the standardized regression weights.
## sr2 represents the semi-partial correlation squared. r represents the zero-order correlation.
## Square brackets are used to enclose the lower and upper limits of a confidence interval.
## * indicates p < .05. ** indicates p < .01.
##
##
##
## Table 2
##
## Regression results using collapseYear$TOEIC as the criterion
##
##
## Predictor b b_95%_CI beta beta_95%_CI sr2
## (Intercept) 565.13** [508.80, 621.46]
## collapseYear$Total.fixed -1.38 [-3.21, 0.46] -0.06 [-0.14, 0.02] .00
##
##
##
## sr2_95%_CI r Fit
##
## [.00, .02] -.06
## R2 = .004
## 95% CI[.00,.02]
##
##
## Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant.
## b represents unstandardized regression weights. beta indicates the standardized regression weights.
## sr2 represents the semi-partial correlation squared. r represents the zero-order correlation.
## Square brackets are used to enclose the lower and upper limits of a confidence interval.
## * indicates p < .05. ** indicates p < .01.
##
##
##
## Table 3
##
## Regression results using collapseYear$ProfScore as the criterion
##
##
## Predictor b b_95%_CI beta beta_95%_CI sr2 sr2_95%_CI
## (Intercept) 3.33** [2.84, 3.83]
## collapseYear$Total.growth 0.03** [0.02, 0.05] 0.18 [0.11, 0.25] .03 [.01, .06]
##
##
##
## r Fit
##
## .18**
## R2 = .033**
## 95% CI[.01,.06]
##
##
## Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant.
## b represents unstandardized regression weights. beta indicates the standardized regression weights.
## sr2 represents the semi-partial correlation squared. r represents the zero-order correlation.
## Square brackets are used to enclose the lower and upper limits of a confidence interval.
## * indicates p < .05. ** indicates p < .01.
##
##
##
## Table 4
##
## Regression results using collapseYear$ProfScore as the criterion
##
##
## Predictor b b_95%_CI beta beta_95%_CI sr2
## (Intercept) 4.79** [4.32, 5.25]
## collapseYear$Total.fixed -0.00 [-0.02, 0.01] -0.02 [-0.09, 0.05] .00
##
##
##
## sr2_95%_CI r Fit
##
## [.00, .01] -.02
## R2 = .000
## 95% CI[.00,.01]
##
##
## Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant.
## b represents unstandardized regression weights. beta indicates the standardized regression weights.
## sr2 represents the semi-partial correlation squared. r represents the zero-order correlation.
## Square brackets are used to enclose the lower and upper limits of a confidence interval.
## * indicates p < .05. ** indicates p < .01.
##
The mean difference of TOEIC scores of those who attended Cram School and those who did not was not statistically significantly different. Mean difference = 27.5984 [-3.338383, 58.535142], t(236.41)= 1.7575; p = 0.0801; ES(r)= 0.114 (very small effect size)
| Contact Details | n | mean | sd | median | se |
|---|---|---|---|---|---|
| No | 157 | 544.2 | 176.42 | 515 | 14.08 |
| Yes | 441 | 516.61 | 146.04 | 500 | 6.95 |
The mean difference of Self-rated Self-rated Proficiencys of those who attended cram school and those who did not was not statistically significantly different. Mean difference = 0.005 [-0.2423701, 0.2530785], t(365.62) = 0.042502; p = .9661; ES(r)= 0.002 (negligable)
| Contact Details | n | mean | sd | median | se |
|---|---|---|---|---|---|
| No | 221 | 4.652 | 1.64 | 4.71 | 0.11 |
| Yes | 604 | 4.647 | 1.51 | 4.71 | 0.06 |
Results here are as a crosstab table. Pearsonβs Chi-squared test used to analyze the results X2(1, N=825) = 1.06709, p = .302. The plot is a mosaic plot - the width of the category represents the number of cases.
Cell Contents |ββββββββ-| | Count | | Row Percent | | Column Percent | | Total Percent | |ββββββββ-|
Total Observations in Table: 825
| Contact Details | Not Attended | Attended | Row Total |
|---|---|---|---|
| No | 196 | 519 | 715 |
| 27.413% | 72.587% | 86.667% | |
| 88.688% | 85.927% | ||
| 23.758% | 62.909% | ||
| βββββββ | ββββ | ββββ | ββββ |
| Yes | 25 | 85 | 110 |
| 22.727% | 77.273% | 13.333% | |
| 11.312% | 14.073% | ||
| 3.030% | 10.303% | ||
| βββββββ | ββββ | ββββ | ββββ |
| Column Total | 221 | 604 | 825 |
| 26.788% | 73.212% | ||
| βββββββ | ββββ | ββββ | ββββ |
| Year | n | mean | sd | median | se |
|---|---|---|---|---|---|
| 3 | 112 | 5.22 | 1.69 | 5.43 | 0.16 |
| 1 | 313 | 4.42 | 1.47 | 4.43 | 0.08 |
| 2 | 400 | 4.67 | 1.51 | 4.71 | 0.08 |
##
## Call:
## lm(formula = ProfScore ~ Year, data = collapseYear, na.action = na.exclude)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6668 -1.0954 0.0475 1.0475 4.1903
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.42036 0.08614 51.316 < 2e-16 ***
## Year2 0.24643 0.11501 2.143 0.0324 *
## Year3 0.79903 0.16780 4.762 2.27e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.524 on 822 degrees of freedom
## Multiple R-squared: 0.02698, Adjusted R-squared: 0.02461
## F-statistic: 11.39 on 2 and 822 DF, p-value: 1.315e-05
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = ProfScore ~ Year, data = collapseYear, na.action = na.exclude)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2 - 1 == 0 0.2464 0.1150 2.143 0.07971 .
## 3 - 1 == 0 0.7990 0.1678 4.762 < 0.001 ***
## 3 - 2 == 0 0.5526 0.1629 3.392 0.00207 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Confidence Intervals
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = ProfScore ~ Year, data = collapseYear, na.action = na.exclude)
##
## Quantile = 2.3358
## 95% family-wise confidence level
##
##
## Linear Hypotheses:
## Estimate lwr upr
## 2 - 1 == 0 0.2464 -0.0222 0.5151
## 3 - 1 == 0 0.7990 0.4071 1.1910
## 3 - 2 == 0 0.5526 0.1721 0.9331
##
## Pairwise comparisons using t tests with pooled SD
##
## data: collapseYear$ProfScore and collapseYear$Year
##
## 1 2
## 2 0.0973 -
## 3 6.8e-06 0.0022
##
## P value adjustment method: bonferroni
## Mean Differences ES:
##
## d [ 95 %CI] = -0.52 [ -0.74 , -0.3 ]
## var(d) = 0.01
## p-value(d) = 0
## U3(d) = 30.06 %
## CLES(d) = 35.59 %
## Cliff's Delta = -0.29
##
## g [ 95 %CI] = -0.52 [ -0.74 , -0.3 ]
## var(g) = 0.01
## p-value(g) = 0
## U3(g) = 30.09 %
## CLES(g) = 35.61 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.22 [ -0.31 , -0.13 ]
## var(r) = 0
## p-value(r) = 0
##
## z [ 95 %CI] = -0.23 [ -0.32 , -0.13 ]
## var(z) = 0
## p-value(z) = 0
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.39 [ 0.26 , 0.58 ]
## p-value(OR) = 0
##
## Log OR [ 95 %CI] = -0.95 [ -1.34 , -0.55 ]
## var(lOR) = 0.04
## p-value(Log OR) = 0
##
## Other:
##
## NNT = -8.79
## Total N = 425
## Mean Differences ES:
##
## d [ 95 %CI] = -0.35 [ -0.57 , -0.14 ]
## var(d) = 0.01
## p-value(d) = 0
## U3(d) = 36.14 %
## CLES(d) = 40.1 %
## Cliff's Delta = -0.2
##
## g [ 95 %CI] = -0.35 [ -0.56 , -0.14 ]
## var(g) = 0.01
## p-value(g) = 0
## U3(g) = 36.16 %
## CLES(g) = 40.11 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.15 [ -0.23 , -0.06 ]
## var(r) = 0
## p-value(r) = 0
##
## z [ 95 %CI] = -0.15 [ -0.23 , -0.06 ]
## var(z) = 0
## p-value(z) = 0
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.53 [ 0.36 , 0.77 ]
## p-value(OR) = 0
##
## Log OR [ 95 %CI] = -0.64 [ -1.03 , -0.26 ]
## var(lOR) = 0.04
## p-value(Log OR) = 0
##
## Other:
##
## NNT = -11.88
## Total N = 512
## Mean Differences ES:
##
## d [ 95 %CI] = -0.17 [ -0.32 , -0.02 ]
## var(d) = 0.01
## p-value(d) = 0.03
## U3(d) = 43.35 %
## CLES(d) = 45.29 %
## Cliff's Delta = -0.09
##
## g [ 95 %CI] = -0.17 [ -0.32 , -0.02 ]
## var(g) = 0.01
## p-value(g) = 0.03
## U3(g) = 43.36 %
## CLES(g) = 45.29 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.08 [ -0.16 , -0.01 ]
## var(r) = 0
## p-value(r) = 0.03
##
## z [ 95 %CI] = -0.08 [ -0.16 , -0.01 ]
## var(z) = 0
## p-value(z) = 0.03
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.74 [ 0.56 , 0.97 ]
## p-value(OR) = 0.03
##
## Log OR [ 95 %CI] = -0.3 [ -0.57 , -0.04 ]
## var(lOR) = 0.02
## p-value(Log OR) = 0.03
##
## Other:
##
## NNT = -22.97
## Total N = 713
Results here are as a crosstab table. Pearsonβs Chi-squared test used to analyze the results X2(2, N = 825) = 8.366843, p = .015. The plot is a mosaic plot - the width of the category represents the number of cases.
| Cell Contents |
|---|
| Count |
| Row Percent |
| Column Percent |
| Total Percent |
| ββββββββ- |
| University Year | No Contact Details | Contact Details | Row Total |
|---|---|---|---|
| 3 | 89 | 23 | 112 |
| 79.464% | 20.536% | 13.576% | |
| 12.448% | 20.909% | ||
| 10.788% | 2.788% | ||
| ββββββ | ββββ | ββββ | ββββ |
| 1 | 282 | 31 | 313 |
| 90.096% | 9.904% | 37.939% | |
| 39.441% | 28.182% | ||
| 34.182% | 3.758% | ||
| ββββββ | ββββ | ββββ | ββββ |
| 2 | 344 | 56 | 400 |
| 86.000% | 14.000% | 48.485% | |
| 48.112% | 50.909% | ||
| 41.697% | 6.788% | ||
| ββββββ | ββββ | ββββ | ββββ |
| Column Total | 715 | 110 | 825 |
| 86.667% | 13.333% | ||
| ββββββ | ββββ | ββββ | ββββ |
| Contacted | n | mean | sd | median | se |
|---|---|---|---|---|---|
| No | 715 | 162.01 | 162.98 | 120 | 6.1 |
| β | β | ββ | ββ | β | ββ |
| Yes | 110 | 162.55 | 163.38 | 160 | 15.58 |
The mean difference of cram school hours for those who did and did not leave contact details was not statistically significantly different. Mean difference = -0.5 [-33.59497, 32.53203], t(144.41) = -0.031771; p = .9747; ES(r) = 0.003 (negligable)
## Mean Differences ES:
##
## d [ 95 %CI] = -1.8 [ -2.09 , -1.52 ]
## var(d) = 0.02
## p-value(d) = 0
## U3(d) = 3.56 %
## CLES(d) = 10.1 %
## Cliff's Delta = -0.8
##
## g [ 95 %CI] = -1.8 [ -2.09 , -1.51 ]
## var(g) = 0.02
## p-value(g) = 0
## U3(g) = 3.6 %
## CLES(g) = 10.16 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.65 [ -0.71 , -0.58 ]
## var(r) = 0
## p-value(r) = 0
##
## z [ 95 %CI] = -0.78 [ -0.9 , -0.66 ]
## var(z) = 0
## p-value(z) = 0
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.04 [ 0.02 , 0.06 ]
## p-value(OR) = 0
##
## Log OR [ 95 %CI] = -3.27 [ -3.8 , -2.75 ]
## var(lOR) = 0.07
## p-value(Log OR) = 0
##
## Other:
##
## NNT = -5.1
## Total N = 279
## Mean Differences ES:
##
## d [ 95 %CI] = -0.93 [ -1.17 , -0.69 ]
## var(d) = 0.01
## p-value(d) = 0
## U3(d) = 17.58 %
## CLES(d) = 25.51 %
## Cliff's Delta = -0.49
##
## g [ 95 %CI] = -0.93 [ -1.17 , -0.69 ]
## var(g) = 0.01
## p-value(g) = 0
## U3(g) = 17.63 %
## CLES(g) = 25.55 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.37 [ -0.45 , -0.28 ]
## var(r) = 0
## p-value(r) = 0
##
## z [ 95 %CI] = -0.38 [ -0.48 , -0.29 ]
## var(z) = 0
## p-value(z) = 0
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.18 [ 0.12 , 0.28 ]
## p-value(OR) = 0
##
## Log OR [ 95 %CI] = -1.69 [ -2.12 , -1.26 ]
## var(lOR) = 0.05
## p-value(Log OR) = 0
##
## Other:
##
## NNT = -6.18
## Total N = 415
## Mean Differences ES:
##
## d [ 95 %CI] = -0.76 [ -0.95 , -0.58 ]
## var(d) = 0.01
## p-value(d) = 0
## U3(d) = 22.22 %
## CLES(d) = 29.43 %
## Cliff's Delta = -0.41
##
## g [ 95 %CI] = -0.76 [ -0.95 , -0.58 ]
## var(g) = 0.01
## p-value(g) = 0
## U3(g) = 22.25 %
## CLES(g) = 29.46 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.35 [ -0.42 , -0.27 ]
## var(r) = 0
## p-value(r) = 0
##
## z [ 95 %CI] = -0.36 [ -0.45 , -0.27 ]
## var(z) = 0
## p-value(z) = 0
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.25 [ 0.18 , 0.35 ]
## p-value(OR) = 0
##
## Log OR [ 95 %CI] = -1.39 [ -1.73 , -1.05 ]
## var(lOR) = 0.03
## p-value(Log OR) = 0
##
## Other:
##
## NNT = -6.85
## Total N = 502
## Mean Differences ES:
##
## d [ 95 %CI] = -0.09 [ -0.31 , 0.13 ]
## var(d) = 0.01
## p-value(d) = 0.41
## U3(d) = 46.41 %
## CLES(d) = 47.46 %
## Cliff's Delta = -0.05
##
## g [ 95 %CI] = -0.09 [ -0.31 , 0.13 ]
## var(g) = 0.01
## p-value(g) = 0.41
## U3(g) = 46.41 %
## CLES(g) = 47.46 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.04 [ -0.13 , 0.06 ]
## var(r) = 0
## p-value(r) = 0.41
##
## z [ 95 %CI] = -0.04 [ -0.14 , 0.06 ]
## var(z) = 0
## p-value(z) = 0.41
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.85 [ 0.57 , 1.26 ]
## p-value(OR) = 0.41
##
## Log OR [ 95 %CI] = -0.16 [ -0.56 , 0.23 ]
## var(lOR) = 0.04
## p-value(Log OR) = 0.41
##
## Other:
##
## NNT = -41.19
## Total N = 425
## Mean Differences ES:
##
## d [ 95 %CI] = -0.01 [ -0.22 , 0.2 ]
## var(d) = 0.01
## p-value(d) = 0.91
## U3(d) = 49.52 %
## CLES(d) = 49.66 %
## Cliff's Delta = -0.01
##
## g [ 95 %CI] = -0.01 [ -0.22 , 0.2 ]
## var(g) = 0.01
## p-value(g) = 0.91
## U3(g) = 49.52 %
## CLES(g) = 49.66 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0 [ -0.09 , 0.08 ]
## var(r) = 0
## p-value(r) = 0.91
##
## z [ 95 %CI] = 0 [ -0.09 , 0.08 ]
## var(z) = 0
## p-value(z) = 0.91
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.98 [ 0.67 , 1.43 ]
## p-value(OR) = 0.91
##
## Log OR [ 95 %CI] = -0.02 [ -0.4 , 0.36 ]
## var(lOR) = 0.04
## p-value(Log OR) = 0.91
##
## Other:
##
## NNT = -299.28
## Total N = 512
## Mean Differences ES:
##
## d [ 95 %CI] = -0.08 [ -0.23 , 0.07 ]
## var(d) = 0.01
## p-value(d) = 0.3
## U3(d) = 46.85 %
## CLES(d) = 47.77 %
## Cliff's Delta = -0.04
##
## g [ 95 %CI] = -0.08 [ -0.23 , 0.07 ]
## var(g) = 0.01
## p-value(g) = 0.3
## U3(g) = 46.86 %
## CLES(g) = 47.78 %
##
## Correlation ES:
##
## r [ 95 %CI] = -0.04 [ -0.11 , 0.03 ]
## var(r) = 0
## p-value(r) = 0.3
##
## z [ 95 %CI] = -0.04 [ -0.11 , 0.03 ]
## var(z) = 0
## p-value(z) = 0.3
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 0.87 [ 0.66 , 1.13 ]
## p-value(OR) = 0.3
##
## Log OR [ 95 %CI] = -0.14 [ -0.41 , 0.13 ]
## var(lOR) = 0.02
## p-value(Log OR) = 0.3
##
## Other:
##
## NNT = -46.78
## Total N = 713
## Mean Differences ES:
##
## d [ 95 %CI] = 0.3 [ 0.08 , 0.51 ]
## var(d) = 0.01
## p-value(d) = 0.01
## U3(d) = 61.64 %
## CLES(d) = 58.29 %
## Cliff's Delta = 0.17
##
## g [ 95 %CI] = 0.3 [ 0.08 , 0.51 ]
## var(g) = 0.01
## p-value(g) = 0.01
## U3(g) = 61.62 %
## CLES(g) = 58.28 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.13 [ 0.03 , 0.22 ]
## var(r) = 0
## p-value(r) = 0.01
##
## z [ 95 %CI] = 0.13 [ 0.03 , 0.23 ]
## var(z) = 0
## p-value(z) = 0.01
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 1.71 [ 1.15 , 2.53 ]
## p-value(OR) = 0.01
##
## Log OR [ 95 %CI] = 0.54 [ 0.14 , 0.93 ]
## var(lOR) = 0.04
## p-value(Log OR) = 0.01
##
## Other:
##
## NNT = 10.79
## Total N = 425
## Mean Differences ES:
##
## d [ 95 %CI] = 0.29 [ 0.08 , 0.5 ]
## var(d) = 0.01
## p-value(d) = 0.01
## U3(d) = 61.53 %
## CLES(d) = 58.21 %
## Cliff's Delta = 0.16
##
## g [ 95 %CI] = 0.29 [ 0.08 , 0.5 ]
## var(g) = 0.01
## p-value(g) = 0.01
## U3(g) = 61.51 %
## CLES(g) = 58.2 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.12 [ 0.03 , 0.21 ]
## var(r) = 0
## p-value(r) = 0.01
##
## z [ 95 %CI] = 0.12 [ 0.03 , 0.21 ]
## var(z) = 0
## p-value(z) = 0.01
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 1.7 [ 1.16 , 2.49 ]
## p-value(OR) = 0.01
##
## Log OR [ 95 %CI] = 0.53 [ 0.15 , 0.91 ]
## var(lOR) = 0.04
## p-value(Log OR) = 0.01
##
## Other:
##
## NNT = 10.91
## Total N = 512
## Mean Differences ES:
##
## d [ 95 %CI] = 0.3 [ 0.15 , 0.45 ]
## var(d) = 0.01
## p-value(d) = 0
## U3(d) = 61.71 %
## CLES(d) = 58.34 %
## Cliff's Delta = 0.17
##
## g [ 95 %CI] = 0.3 [ 0.15 , 0.45 ]
## var(g) = 0.01
## p-value(g) = 0
## U3(g) = 61.7 %
## CLES(g) = 58.34 %
##
## Correlation ES:
##
## r [ 95 %CI] = 0.15 [ 0.07 , 0.22 ]
## var(r) = 0
## p-value(r) = 0
##
## z [ 95 %CI] = 0.15 [ 0.07 , 0.22 ]
## var(z) = 0
## p-value(z) = 0
##
## Odds Ratio ES:
##
## OR [ 95 %CI] = 1.72 [ 1.31 , 2.25 ]
## p-value(OR) = 0
##
## Log OR [ 95 %CI] = 0.54 [ 0.27 , 0.81 ]
## var(lOR) = 0.02
## p-value(Log OR) = 0
##
## Other:
##
## NNT = 10.71
## Total N = 713