library(tidyverse)
library(openintro)arbuthnot$girls## [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288
In the plot below we observe a sharp decline in female baptisms from 1640 to 1660.This would require further investigation as to why there was such a large decrease in that time period.
ggplot(data = arbuthnot, aes(x = year, y = girls)) +
geom_point()In the plot below we are looking at the boy baptism count as a % of total baptisms. What we can see in the scatter plot below is that there was a pretty close to equal number of baptisms for males and females, but there we always more boys being baptized. The proportion never falls below 50%.
arbuthnot <- arbuthnot %>%
mutate(total = boys + girls)
arbuthnot <- arbuthnot %>%
mutate(boy_to_girl_ratio = boys / girls)
arbuthnot <- arbuthnot %>%
mutate(boy_ratio = boys / total)
ggplot(data = arbuthnot, aes(x = year, y = boy_ratio)) +
geom_point()After taking a glimpse we can see three columns in the present dataset.
year: the year the birth took place boys: the count of boys born that year girls: the count of girls born that year
head(present)## # A tibble: 6 x 3
## year boys girls
## <dbl> <dbl> <dbl>
## 1 1940 1211684 1148715
## 2 1941 1289734 1223693
## 3 1942 1444365 1364631
## 4 1943 1508959 1427901
## 5 1944 1435301 1359499
## 6 1945 1404587 1330869
The dataset appear to contain the years ranging from 1940 - 2002.
present %>%
summarize(min = min(year), max = max(year))## # A tibble: 1 x 2
## min max
## <dbl> <dbl>
## 1 1940 2002
After taking the average counts of the 2 datasets, the present table is dealing with counts 3 orders of magnitude larger than the arbuthnot table.
present %>%
summarize(avg_boy = mean(boys), avg_girl = mean(girls))## # A tibble: 1 x 2
## avg_boy avg_girl
## <dbl> <dbl>
## 1 1885600. 1793915.
arbuthnot %>%
summarize(avg_boy = mean(boys), avg_girl = mean(girls))## # A tibble: 1 x 2
## avg_boy avg_girl
## <dbl> <dbl>
## 1 5907. 5535.
Looking at the birthrates we observe the same trend. Boys are being born in a greater proportion, however there seems to be a downward trend over the years.
present <- present %>%
mutate(birth_total = boys + girls)
present <- present %>%
mutate(boy_proportion = boys / birth_total)
ggplot(data = present, aes(x = year, y = boy_proportion)) +
geom_point()1961 is the year with the highest birth total in this data set.
print(present %>%
arrange(desc(birth_total)))## # A tibble: 63 x 5
## year boys girls birth_total boy_proportion
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1961 2186274 2082052 4268326 0.512
## 2 1960 2179708 2078142 4257850 0.512
## 3 1957 2179960 2074824 4254784 0.512
## 4 1959 2173638 2071158 4244796 0.512
## 5 1958 2152546 2051266 4203812 0.512
## 6 1962 2132466 2034896 4167362 0.512
## 7 1956 2133588 2029502 4163090 0.513
## 8 1990 2129495 2028717 4158212 0.512
## 9 1991 2101518 2009389 4110907 0.511
## 10 1963 2101632 1996388 4098020 0.513
## # … with 53 more rows