This document summarises the forecast outcomes for the most set of forecasts for English football match outcomes, following on from recent weeks, and it provides outcomes for forecasts of matches over the last week as detailed in this document.
Two sets of forecasts are constructed, one using a simple linear regression method for a dependent variable taking the values 0 for an away win, 0.5 for a draw, and 1 for a home win. This linear regression method only yields a number which can be interpreted as a probability of an outcome occurring. The second, ordered logit method, treats each outcome in an ordered manner, from away win, to draw, to home win, and estimates a probability for each outcome.
The purpose of this document is to evaluate these forecasts, and begin to form a longer-term narrative about them.
To consider outcomes; we must load up the specific outcomes file for matches forecast over the weekend:
dates <- c("2015-01-30","2015-02-06","2015-02-13","2015-02-20","2015-02-27","2015-03-06",
"2015-03-13","2015-03-20")
date.1 <- dates[NROW(dates)]
recent.forecast.outcomes <- read.csv(paste("forecast_outcomes_",date.1,".csv",sep=""),stringsAsFactors=F)
forecast.matches <- read.csv(paste("forecasts_",date.1,".csv",sep=""))
forecast.matches <- forecast.matches[is.na(forecast.matches$outcome)==F,]
forecast.outcomes <- merge(forecast.matches[,c("match_id","outcome","Ph","Pd","Pa")],
recent.forecast.outcomes,by=c("match_id"),
suffixes=c(".forc",".final"))
forecast.outcomes <- forecast.outcomes[is.na(forecast.outcomes$outcome.final)==F,]
all.forecast.outcomes <- data.frame()
loc <- "/home/readejj/Dropbox/Teaching/Reading/ec313/2015/Football-forecasts/"
for(i in dates) {
temp.0 <- read.csv(paste(loc,"forecast_outcomes_",i,".csv",sep=""),stringsAsFactors=F)
temp.0$X <-NULL
temp.0$forc.week <- i
temp.1 <- read.csv(paste(loc,"forecasts_",i,".csv",sep=""))
temp.1$X <-NULL
temp.1 <- temp.1[is.na(temp.1$outcome)==F,]
if(!("Ph" %in% colnames(temp.1))) {
temp.1$Ph <- NA
temp.1$Pd <- NA
temp.1$Pa <- NA
}
if(!("tier" %in% colnames(temp.0))) {
temp.0$tier <- NA
}
temp.2 <- merge(temp.1[,c("match_id","outcome","Ph","Pd","Pa")],
temp.0[,c("match_id","date","division","team1",
"goals1","goals2","team2","outcome",
"season","tier","forc.week")],
by=c("match_id"),suffixes=c(".forc",".final"))
all.forecast.outcomes <- rbind(temp.2[is.na(temp.2$outcome.final)==F,],all.forecast.outcomes)
}
outcomeplot <- function(div) {
matches <- forecast.outcomes[forecast.outcomes$division==div,]
matches$id <- 1:NROW(matches)
par(mar=c(9,4,4,5)+.1)
plot(matches$id,matches$outcome.forc,xaxt="n",xlab="",ylim=range(0,1),
main=paste("Forecasts of Weekend ",div," Matches",sep=""),
ylab="Probability of Outcome")
lines(matches$id,matches$Ph,col=2,pch=15,type="p")
lines(matches$id,matches$Pd,col=3,pch=16,type="p")
lines(matches$id,matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
abline(h=0.4,lty=3)
for(i in 1:NROW(matches)) {
if(matches$outcome.final[i]==1) {
lines(matches$id[i],matches$outcome.final[i],col=2,type="p",pch=0)
lines(rep(i,2),c(matches$Ph[i],matches$outcome.final[i]),type="l",lty=2,col="red")
} else if (matches$outcome.final[i]==0.5) {
lines(matches$id[i],matches$outcome.final[i],col=3,type="p",pch=1)
lines(rep(i,2),c(matches$Pd[i],matches$outcome.final[i]),type="l",lty=2,col="green")
} else {
lines(matches$id[i],matches$outcome.final[i],col=4,type="p",pch=2)
lines(rep(i,2),c(matches$Pa[i],matches$outcome.final[i]),type="l",lty=2,col="blue")
}
}
axis(1,at=matches$id,labels=paste(matches$team1,matches$team2,sep=" v "),las=2,cex.axis=0.65)
}
We also load up previous weeks’ forecasts and outcomes in order that we can begin to determine trends over time. This week was one particularly filled with surprise results, but that does not necessarily mean our forecast model need be amended. More, it reflects that football is intrinsically a very uncertain game. This, of course, is not to say that the model cannot be improved upon.
First, our Premier League forecasts:
outcomeplot("English Premier")
Outcomes are hollowed variants of their predicted probabilities; red empty circles are home wins, marked on at 1, green empty circles are draws, marked on at 0.5, and blue empty triangles are away wins. All are linked to their associated probability. This drawing doesn’t quite reflect actual forecast errors since each outcome is 1 if it happened, but nonetheless illustrates the weekend’s outcomes.
Next, our Championship forecasts:
outcomeplot("English Championship")
Next, our League One forecasts:
outcomeplot("English League One")
Next, our League Two forecasts:
outcomeplot("English League Two")
Next, our Football Conference forecasts:
outcomeplot("Football Conference")
Numerically it is important to evaluate forecast errors.
For the OLS model:
forecast.outcomes$error <- forecast.outcomes$outcome.final - forecast.outcomes$outcome.forc
forecast.outcomes$error2 <- forecast.outcomes$error^2
forecast.outcomes$aerror <- abs(forecast.outcomes$error)
#summary(forecast.outcomes[forecast.outcomes$tier<=5,c("error","error2","aerror")])
summary(forecast.outcomes[,c("error","error2","aerror")])
## error error2 aerror
## Min. :-0.81213 Min. :0.000176 Min. :0.01327
## 1st Qu.:-0.39298 1st Qu.:0.050603 1st Qu.:0.22494
## Median : 0.01645 Median :0.122864 Median :0.35052
## Mean :-0.01067 Mean :0.167176 Mean :0.36176
## 3rd Qu.: 0.34147 3rd Qu.:0.239396 3rd Qu.:0.48928
## Max. : 0.55940 Max. :0.659555 Max. :0.81213
For the ordered logit we must consider the three outcomes distinctly; for the home win:
forecast.outcomes$error.h <- forecast.outcomes$outcome.final - forecast.outcomes$Ph
forecast.outcomes$error.d <- as.numeric(forecast.outcomes$outcome.final==0.5) - forecast.outcomes$Pd
forecast.outcomes$error.a <- as.numeric(forecast.outcomes$outcome.final==0) - forecast.outcomes$Pa
forecast.outcomes$error.h2 <- forecast.outcomes$error.h^2
forecast.outcomes$error.d2 <- forecast.outcomes$error.d^2
forecast.outcomes$error.a2 <- forecast.outcomes$error.a^2
forecast.outcomes$aerror.h <- abs(forecast.outcomes$error.h)
forecast.outcomes$aerror.d <- abs(forecast.outcomes$error.d)
forecast.outcomes$aerror.a <- abs(forecast.outcomes$error.a)
#summary(forecast.outcomes[forecast.outcomes$tier<=5,c("error","error2","aerror")])
summary(forecast.outcomes[,c("error.h","error.d","error.a")])
## error.h error.d error.a
## Min. :-0.7130 Min. :-0.28876 Min. :-0.61849
## 1st Qu.:-0.2442 1st Qu.:-0.28159 1st Qu.:-0.26300
## Median : 0.1746 Median :-0.24986 Median :-0.18951
## Mean : 0.1204 Mean :-0.02964 Mean : 0.02119
## 3rd Qu.: 0.4687 3rd Qu.:-0.17142 3rd Qu.: 0.51228
## Max. : 0.7147 Max. : 0.81751 Max. : 0.89081
Considering here just the mean errors, the forecasts for home wins were biased downward much more than those for either the draw or away win; a positive forecast error suggests that the event occurs more often than the model predicts. Â Until we consider more forecasts, it is difficult to say whether this is simply an artifact of one particular week.
We can consider also, by division, forecast errors for our linear regression model:
library(knitr)
aggs <- aggregate(forecast.outcomes[,c("error","error2","aerror")],
by=list(forecast.outcomes$division),FUN=mean,na.rm=T)
kable(aggs[c(4,1,2,3,5),])
| Group.1 | error | error2 | aerror | |
|---|---|---|---|---|
| 4 | English League One | 0.1322228 | 0.1725146 | 0.3790621 |
| 1 | Conference North | 0.2917426 | 0.0892911 | 0.2917426 |
| 2 | Conference South | -0.4457166 | 0.1986633 | 0.4457166 |
| 3 | English Championship | -0.0800856 | 0.2079279 | 0.4119031 |
| 5 | English League Two | -0.0530585 | 0.1516130 | 0.3331959 |
The error column is the mean forecast error, the error2 column is the mean squared forecast error, and the aerror column is the absolute forecast error.
We do the same for each outcome for the ordered probit model:
library(knitr)
aggs <- aggregate(forecast.outcomes[,c("error.h","error.h2","aerror.h")],
by=list(forecast.outcomes$division),FUN=mean,na.rm=T)
colnames(aggs) <- gsub("Group.1","Home win",colnames(aggs))
kable(aggs[c(4,1,2,3,5),])
| Home win | error.h | error.h2 | aerror.h | |
|---|---|---|---|---|
| 4 | English League One | 0.2708243 | 0.2292139 | 0.4302124 |
| 1 | Conference North | 0.4106581 | 0.1743430 | 0.4106581 |
| 2 | Conference South | -0.2865024 | 0.0820836 | 0.2865024 |
| 3 | English Championship | 0.0454024 | 0.2058031 | 0.4169893 |
| 5 | English League Two | 0.0886337 | 0.1584265 | 0.3309699 |
aggs <- aggregate(forecast.outcomes[,c("error.d","error.d2","aerror.d")],
by=list(forecast.outcomes$division),FUN=mean,na.rm=T)
colnames(aggs) <- gsub("Group.1","Draw",colnames(aggs))
kable(aggs[c(4,1,2,3,5),])
| Draw | error.d | error.d2 | aerror.d | |
|---|---|---|---|---|
| 4 | English League One | -0.0195968 | 0.1969545 | 0.3932748 |
| 1 | Conference North | -0.2322573 | 0.0548560 | 0.2322573 |
| 2 | Conference South | -0.2821696 | 0.0796197 | 0.2821696 |
| 3 | English Championship | 0.0048305 | 0.1980514 | 0.3817344 |
| 5 | English League Two | 0.0668038 | 0.2246139 | 0.4196360 |
aggs <- aggregate(forecast.outcomes[,c("error.a","error.a2","aerror.a")],
by=list(forecast.outcomes$division),FUN=mean,na.rm=T)
colnames(aggs) <- gsub("Group.1","Away win",colnames(aggs))
kable(aggs[c(4,1,2,3,5),])
| Away win | error.a | error.a2 | aerror.a | |
|---|---|---|---|---|
| 4 | English League One | -0.1262275 | 0.1533157 | 0.3521596 |
| 1 | Conference North | -0.1784007 | 0.0338797 | 0.1784007 |
| 2 | Conference South | 0.5686719 | 0.3233878 | 0.5686719 |
| 3 | English Championship | 0.0747670 | 0.2522646 | 0.4251404 |
| 5 | English League Two | 0.0112292 | 0.1917875 | 0.3960793 |
We can also look at errors across weeks:
all.forecast.outcomes$error.h <- all.forecast.outcomes$outcome.final - all.forecast.outcomes$Ph
all.forecast.outcomes$error.d <- as.numeric(all.forecast.outcomes$outcome.final==0.5) - all.forecast.outcomes$Pd
all.forecast.outcomes$error.a <- as.numeric(all.forecast.outcomes$outcome.final==0) - all.forecast.outcomes$Pa
all.forecast.outcomes$error.h2 <- all.forecast.outcomes$error.h^2
all.forecast.outcomes$error.d2 <- all.forecast.outcomes$error.d^2
all.forecast.outcomes$error.a2 <- all.forecast.outcomes$error.a^2
all.forecast.outcomes$aerror.h <- abs(all.forecast.outcomes$error.h)
all.forecast.outcomes$aerror.d <- abs(all.forecast.outcomes$error.d)
all.forecast.outcomes$aerror.a <- abs(all.forecast.outcomes$error.a)
aggs.h <- aggregate(all.forecast.outcomes[,c("error.h","error.h2","aerror.h")],
by=list(all.forecast.outcomes$forc.week),FUN=mean,na.rm=T)
aggs.d <- aggregate(all.forecast.outcomes[,c("error.d","error.d2","aerror.d")],
by=list(all.forecast.outcomes$forc.week),FUN=mean,na.rm=T)
aggs.a <- aggregate(all.forecast.outcomes[,c("error.a","error.a2","aerror.a")],
by=list(all.forecast.outcomes$forc.week),FUN=mean,na.rm=T)
plot(as.Date(aggs.h$Group.1),aggs.h$error.h,type="o",main="Forecast Errors Each Week",
ylab="Forecast Error",xlab="Date",
ylim=range(c(aggs.h$error.h,aggs.d$error.d,aggs.a$error.a),na.rm=T),col="red")
lines(as.Date(aggs.d$Group.1),aggs.d$error.d,type="o",col="green")
lines(as.Date(aggs.a$Group.1),aggs.a$error.a,type="o",col="blue")
plot(as.Date(aggs.h$Group.1),aggs.h$error.h2,type="o",main="Squared Forecast Errors Each Week",
ylab="Forecast Error",xlab="Date",
ylim=range(c(aggs.h$error.h2,aggs.d$error.d2,aggs.a$error.a2),na.rm=T),col="red")
lines(as.Date(aggs.d$Group.1),aggs.d$error.d2,type="o",col="green")
lines(as.Date(aggs.a$Group.1),aggs.a$error.a2,type="o",col="blue")
plot(as.Date(aggs.h$Group.1),aggs.h$aerror.h,type="o",main="Absolute Forecast Errors Each Week",
ylab="Forecast Error",xlab="Date",
ylim=range(c(aggs.h$aerror.h,aggs.d$aerror.d,aggs.a$aerror.a),na.rm=T),col="red")
lines(as.Date(aggs.d$Group.1),aggs.d$aerror.d,type="o",col="green")
lines(as.Date(aggs.a$Group.1),aggs.a$aerror.a,type="o",col="blue")
Finally, we list all the forecasts again with outcomes:
kable(forecast.outcomes[order(forecast.outcomes$date,forecast.outcomes$division),
c("date","division","team1","goals1","goals2","team2",
"outcome.forc","Ph","Pd","Pa","outcome.final","error","error2","aerror")],digits=3)
| date | division | team1 | goals1 | goals2 | team2 | outcome.forc | Ph | Pd | Pa | outcome.final | error | error2 | aerror | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 11 | 2015-03-20 | English Championship | Wolves | 2 | 0 | Derby | 0.668 | 0.543 | 0.253 | 0.204 | 1.0 | 0.332 | 0.110 | 0.332 |
| 60 | 2015-03-20 | Football Conference | Bristol R | 3 | 1 | Aldershot | 0.765 | 0.659 | 0.205 | 0.136 | 1.0 | 0.235 | 0.055 | 0.235 |
| 63 | 2015-03-21 | Conference North | Tamworth | 3 | 1 | Hednesford | 0.644 | 0.514 | 0.262 | 0.224 | 1.0 | 0.356 | 0.127 | 0.356 |
| 64 | 2015-03-21 | Conference North | Boston Utd | 2 | 1 | Gainsborough | 0.773 | 0.665 | 0.202 | 0.133 | 1.0 | 0.227 | 0.052 | 0.227 |
| 62 | 2015-03-21 | Conference South | Farnborough | 2 | 7 | Bath City | 0.446 | 0.287 | 0.282 | 0.431 | 0.0 | -0.446 | 0.199 | 0.446 |
| 12 | 2015-03-21 | English Championship | Bournemouth | 3 | 0 | Middlesbro | 0.673 | 0.552 | 0.250 | 0.198 | 1.0 | 0.327 | 0.107 | 0.327 |
| 13 | 2015-03-21 | English Championship | Huddersfield | 0 | 2 | Fulham | 0.506 | 0.352 | 0.289 | 0.359 | 0.0 | -0.506 | 0.256 | 0.506 |
| 14 | 2015-03-21 | English Championship | Rotherham | 2 | 3 | Sheff Wed | 0.490 | 0.333 | 0.288 | 0.379 | 0.0 | -0.490 | 0.240 | 0.490 |
| 15 | 2015-03-21 | English Championship | Blackburn | 0 | 1 | Brighton | 0.743 | 0.628 | 0.219 | 0.153 | 0.0 | -0.743 | 0.552 | 0.743 |
| 16 | 2015-03-21 | English Championship | Charlton | 3 | 2 | Reading | 0.710 | 0.596 | 0.233 | 0.171 | 1.0 | 0.290 | 0.084 | 0.290 |
| 17 | 2015-03-21 | English Championship | Watford | 0 | 1 | Ipswich | 0.812 | 0.713 | 0.178 | 0.109 | 0.0 | -0.812 | 0.660 | 0.812 |
| 18 | 2015-03-21 | English Championship | Cardiff | 2 | 0 | Birmingham | 0.554 | 0.407 | 0.286 | 0.307 | 1.0 | 0.446 | 0.199 | 0.446 |
| 19 | 2015-03-21 | English Championship | Wigan | 1 | 1 | Bolton | 0.606 | 0.468 | 0.275 | 0.257 | 0.5 | -0.106 | 0.011 | 0.106 |
| 20 | 2015-03-21 | English Championship | Norwich | 3 | 1 | Nottm Forest | 0.627 | 0.502 | 0.266 | 0.232 | 1.0 | 0.373 | 0.139 | 0.373 |
| 21 | 2015-03-21 | English Championship | Brentford | 2 | 2 | Millwall | 0.794 | 0.704 | 0.182 | 0.114 | 0.5 | -0.294 | 0.086 | 0.294 |
| 22 | 2015-03-21 | English Championship | Blackpool | 1 | 1 | Leeds | 0.277 | 0.158 | 0.223 | 0.618 | 0.5 | 0.223 | 0.050 | 0.223 |
| 23 | 2015-03-21 | English League One | Barnsley | 1 | 1 | Preston | 0.484 | 0.329 | 0.288 | 0.384 | 0.5 | 0.016 | 0.000 | 0.016 |
| 24 | 2015-03-21 | English League One | Sheff Utd | 1 | 0 | Port Vale | 0.634 | 0.503 | 0.266 | 0.232 | 1.0 | 0.366 | 0.134 | 0.366 |
| 26 | 2015-03-21 | English League One | Crawley | 1 | 0 | Leyton Orient | 0.512 | 0.355 | 0.289 | 0.357 | 1.0 | 0.488 | 0.238 | 0.488 |
| 27 | 2015-03-21 | English League One | Gillingham | 2 | 2 | Colchester | 0.778 | 0.671 | 0.199 | 0.130 | 0.5 | -0.278 | 0.077 | 0.278 |
| 28 | 2015-03-21 | English League One | Bradford | 2 | 2 | Fleetwood | 0.618 | 0.484 | 0.271 | 0.245 | 0.5 | -0.118 | 0.014 | 0.118 |
| 29 | 2015-03-21 | English League One | Crewe | 0 | 1 | Oldham | 0.581 | 0.436 | 0.281 | 0.283 | 0.0 | -0.581 | 0.337 | 0.581 |
| 30 | 2015-03-21 | English League One | Peterborough | 1 | 0 | Chesterfield | 0.649 | 0.518 | 0.261 | 0.221 | 1.0 | 0.351 | 0.123 | 0.351 |
| 31 | 2015-03-21 | English League One | Coventry | 1 | 3 | Doncaster | 0.504 | 0.350 | 0.289 | 0.362 | 0.0 | -0.504 | 0.254 | 0.504 |
| 32 | 2015-03-21 | English League One | Rochdale | 3 | 1 | Scunthorpe | 0.670 | 0.555 | 0.249 | 0.196 | 1.0 | 0.330 | 0.109 | 0.330 |
| 33 | 2015-03-21 | English League One | MK Dons | 4 | 1 | Notts Co | 0.441 | 0.302 | 0.285 | 0.413 | 1.0 | 0.559 | 0.313 | 0.559 |
| 34 | 2015-03-21 | English League Two | Plymouth | 0 | 0 | Newport Co | 0.529 | 0.379 | 0.288 | 0.333 | 0.5 | -0.029 | 0.001 | 0.029 |
| 35 | 2015-03-21 | English League Two | AFC W’bledon | 1 | 0 | Portsmouth | 0.481 | 0.322 | 0.287 | 0.390 | 1.0 | 0.519 | 0.270 | 0.519 |
| 36 | 2015-03-21 | English League Two | Shrewsbury | 2 | 0 | Oxford | 0.737 | 0.630 | 0.218 | 0.152 | 1.0 | 0.263 | 0.069 | 0.263 |
| 37 | 2015-03-21 | English League Two | Tranmere | 1 | 4 | Burton | 0.350 | 0.209 | 0.255 | 0.536 | 0.0 | -0.350 | 0.122 | 0.350 |
| 38 | 2015-03-21 | English League Two | Hartlepool | 1 | 0 | Mansfield | 0.447 | 0.287 | 0.282 | 0.431 | 1.0 | 0.553 | 0.306 | 0.553 |
| 39 | 2015-03-21 | English League Two | Cheltenham | 1 | 2 | Exeter | 0.478 | 0.321 | 0.287 | 0.391 | 0.0 | -0.478 | 0.228 | 0.478 |
| 40 | 2015-03-21 | English League Two | Southend | 0 | 0 | Cambridge U | 0.690 | 0.564 | 0.245 | 0.191 | 0.5 | -0.190 | 0.036 | 0.190 |
| 41 | 2015-03-21 | English League Two | Carlisle | 1 | 1 | Morecambe | 0.651 | 0.521 | 0.260 | 0.219 | 0.5 | -0.151 | 0.023 | 0.151 |
| 42 | 2015-03-21 | English League Two | Bury | 2 | 1 | Northampton | 0.668 | 0.538 | 0.255 | 0.207 | 1.0 | 0.332 | 0.110 | 0.332 |
| 44 | 2015-03-21 | English League Two | Accrington | 2 | 2 | York | 0.487 | 0.325 | 0.288 | 0.387 | 0.5 | 0.013 | 0.000 | 0.013 |
| 45 | 2015-03-21 | English League Two | Stevenage | 0 | 1 | Dag & Red | 0.674 | 0.552 | 0.250 | 0.198 | 0.0 | -0.674 | 0.455 | 0.674 |
| 3 | 2015-03-21 | English Premier | Stoke | 1 | 2 | C Palace | 0.619 | 0.482 | 0.271 | 0.247 | 0.0 | -0.619 | 0.383 | 0.619 |
| 4 | 2015-03-21 | English Premier | Newcastle | 1 | 2 | Arsenal | 0.301 | 0.173 | 0.234 | 0.593 | 0.0 | -0.301 | 0.090 | 0.301 |
| 5 | 2015-03-21 | English Premier | Southampton | 2 | 0 | Burnley | 0.779 | 0.685 | 0.192 | 0.123 | 1.0 | 0.221 | 0.049 | 0.221 |
| 6 | 2015-03-21 | English Premier | Tottenham | 4 | 3 | Leicester | 0.782 | 0.679 | 0.195 | 0.126 | 1.0 | 0.218 | 0.047 | 0.218 |
| 7 | 2015-03-21 | English Premier | Man City | 3 | 0 | West Brom | 0.689 | 0.587 | 0.237 | 0.177 | 1.0 | 0.311 | 0.097 | 0.311 |
| 8 | 2015-03-21 | English Premier | Aston Villa | 0 | 1 | Swansea | 0.578 | 0.434 | 0.282 | 0.285 | 0.0 | -0.578 | 0.334 | 0.578 |
| 10 | 2015-03-21 | English Premier | West Ham | 1 | 0 | Sunderland | 0.647 | 0.524 | 0.259 | 0.217 | 1.0 | 0.353 | 0.125 | 0.353 |
| 48 | 2015-03-21 | Football Conference | Wrexham | 1 | 1 | Lincoln | 0.701 | 0.584 | 0.238 | 0.178 | 0.5 | -0.201 | 0.040 | 0.201 |
| 50 | 2015-03-21 | Football Conference | Torquay | 2 | 1 | Kidderminster | 0.596 | 0.458 | 0.277 | 0.265 | 1.0 | 0.404 | 0.163 | 0.404 |
| 51 | 2015-03-21 | Football Conference | Barnet | 5 | 0 | Welling | 0.849 | 0.762 | 0.151 | 0.087 | 1.0 | 0.151 | 0.023 | 0.151 |
| 53 | 2015-03-21 | Football Conference | Macclesfield | 0 | 1 | Nuneaton | 0.737 | 0.643 | 0.212 | 0.145 | 0.0 | -0.737 | 0.544 | 0.737 |
| 54 | 2015-03-21 | Football Conference | Alfreton | 1 | 1 | Chester | 0.587 | 0.447 | 0.279 | 0.273 | 0.5 | -0.087 | 0.008 | 0.087 |
| 55 | 2015-03-21 | Football Conference | Dover | 1 | 0 | Gateshead | 0.541 | 0.393 | 0.287 | 0.320 | 1.0 | 0.459 | 0.211 | 0.459 |
| 56 | 2015-03-21 | Football Conference | Grimsby | 2 | 1 | Eastleigh | 0.635 | 0.503 | 0.266 | 0.231 | 1.0 | 0.365 | 0.133 | 0.365 |
| 57 | 2015-03-21 | Football Conference | Woking | 1 | 0 | Forest Green | 0.549 | 0.402 | 0.286 | 0.312 | 1.0 | 0.451 | 0.203 | 0.451 |
| 59 | 2015-03-21 | Football Conference | Southport | 2 | 0 | Dartford | 0.685 | 0.562 | 0.246 | 0.192 | 1.0 | 0.315 | 0.099 | 0.315 |
| 61 | 2015-03-21 | Football Conference | Altrincham | 0 | 0 | Halifax | 0.515 | 0.363 | 0.289 | 0.349 | 0.5 | -0.015 | 0.000 | 0.015 |
| 1 | 2015-03-22 | English Premier | QPR | 1 | 2 | Everton | 0.464 | 0.307 | 0.286 | 0.407 | 0.0 | -0.464 | 0.215 | 0.464 |
| 2 | 2015-03-22 | English Premier | Hull | 2 | 3 | Chelsea | 0.274 | 0.156 | 0.222 | 0.622 | 0.0 | -0.274 | 0.075 | 0.274 |
| 9 | 2015-03-22 | English Premier | Liverpool | 1 | 2 | Man Utd | 0.605 | 0.464 | 0.276 | 0.260 | 0.0 | -0.605 | 0.366 | 0.605 |
| 66 | 2015-03-22 | JP Trophy | Bristol C | 2 | 0 | Walsall | 0.828 | 0.737 | 0.165 | 0.098 | 1.0 | 0.172 | 0.030 | 0.172 |
| 25 | 2015-03-24 | English League One | Oldham | 3 | 0 | Rochdale | 0.442 | 0.285 | 0.282 | 0.433 | 1.0 | 0.558 | 0.311 | 0.558 |
| 65 | 2015-03-24 | English League One | Sheff Utd | 4 | 0 | Scunthorpe | 0.601 | 0.463 | 0.276 | 0.261 | 1.0 | 0.399 | 0.159 | 0.399 |
| 43 | 2015-03-24 | English League Two | Luton | 2 | 3 | Wycombe | 0.446 | 0.287 | 0.282 | 0.430 | 0.0 | -0.446 | 0.199 | 0.446 |
| 46 | 2015-03-24 | Football Conference | Braintree | 0 | 2 | Telford | 0.752 | 0.652 | 0.208 | 0.140 | 0.0 | -0.752 | 0.565 | 0.752 |
| 47 | 2015-03-24 | Football Conference | Alfreton | 0 | 0 | Dartford | 0.688 | 0.566 | 0.245 | 0.190 | 0.5 | -0.188 | 0.035 | 0.188 |
| 49 | 2015-03-24 | Football Conference | Dover | 0 | 1 | Grimsby | 0.436 | 0.280 | 0.281 | 0.439 | 0.0 | -0.436 | 0.190 | 0.436 |
| 52 | 2015-03-24 | Football Conference | Woking | 3 | 2 | Torquay | 0.767 | 0.662 | 0.203 | 0.135 | 1.0 | 0.233 | 0.054 | 0.233 |
| 58 | 2015-03-24 | Football Conference | Nuneaton | 2 | 0 | Wrexham | 0.450 | 0.294 | 0.284 | 0.423 | 1.0 | 0.550 | 0.303 | 0.550 |
| 67 | 2015-03-24 | Football Conference | Halifax | 2 | 2 | Gateshead | 0.523 | 0.370 | 0.288 | 0.341 | 0.5 | -0.023 | 0.001 | 0.023 |