This week, we will continue to work with the Scotland dataset (scotland.dta) from Leckie (2013). This is a sample of more than 2,000 Scottish primary school students nested within 17 schools and also nested within 500+ neighborhoods.
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.3 ✓ dplyr 1.0.2
## ✓ tidyr 1.1.1 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ───────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
library(lme4)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
scotland <- haven::read_dta("scotland.dta")
glimpse(scotland)
## Rows: 2,310
## Columns: 11
## $ neighid <dbl> 26, 26, 26, 26, 26, 27, 29, 29, 29, 29, 29, 29, 29, 29, 29, …
## $ schid <dbl> 20, 20, 20, 20, 20, 20, 18, 20, 20, 20, 20, 20, 20, 20, 20, …
## $ attain <dbl> 1.5177, -1.3276, 0.5610, 1.5177, -1.3276, -0.1325, 0.0293, 0…
## $ p7vrq <dbl> 17.972, -10.028, 2.972, 1.972, -1.028, 3.972, 8.972, -0.028,…
## $ p7read <dbl> 17.134, -27.866, 6.134, 11.134, -0.866, -0.866, 6.134, -5.86…
## $ dadocc <dbl> 16.196, -3.454, 2.316, -9.094, -3.454, -3.454, 16.196, -3.45…
## $ dadunemp <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ daded <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, …
## $ momed <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ male <dbl> 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, …
## $ deprive <dbl> -0.551, -0.551, -0.551, -0.551, -0.551, 0.147, -0.083, -0.08…
describe function from Hmisc is a great codebook…describe(scotland)
## scotland
##
## 11 Variables 2310 Observations
## --------------------------------------------------------------------------------
## neighid Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 524 1 495.3 305.5 61.0 143.9
## .25 .50 .75 .90 .95
## 240.2 530.0 707.0 808.0 861.0
##
## lowest : 26 27 29 30 31, highest: 1092 1095 1096 1097 1098
## --------------------------------------------------------------------------------
## schid Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 17 0.995 10.01 7.174 0 2
## .25 .50 .75 .90 .95
## 5 9 16 19 20
##
## lowest : 0 1 2 3 5, highest: 16 17 18 19 20
##
## Value 0 1 2 3 5 6 7 8 9 10 13
## Frequency 146 22 146 159 155 101 286 112 136 133 92
## Proportion 0.063 0.010 0.063 0.069 0.067 0.044 0.124 0.048 0.059 0.058 0.040
##
## Value 15 16 17 18 19 20
## Frequency 190 111 154 91 102 174
## Proportion 0.082 0.048 0.067 0.039 0.044 0.075
## --------------------------------------------------------------------------------
## attain Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 14 0.987 0.0934 1.124 -1.3276 -1.3276
## .25 .50 .75 .90 .95
## -0.5812 0.1582 0.7350 1.5177 1.5177
##
## lowest : -1.3276 -0.5812 -0.3600 -0.1325 0.0293
## highest: 0.7350 0.9127 1.1405 1.5177 2.4151
## --------------------------------------------------------------------------------
## p7vrq Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 68 0.999 0.5058 11.95 -17.028 -13.028
## .25 .50 .75 .90 .95
## -7.028 -0.028 7.972 13.972 16.972
##
## lowest : -27.028 -26.028 -25.028 -24.028 -23.028
## highest: 35.972 36.972 40.972 41.972 42.972
## --------------------------------------------------------------------------------
## p7read Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 61 1 -0.04435 15.8 -23.866 -17.866
## .25 .50 .75 .90 .95
## -9.866 -0.866 9.134 19.134 24.134
##
## lowest : -31.866 -30.866 -29.866 -28.866 -27.866
## highest: 24.134 25.134 26.134 27.134 28.134
## --------------------------------------------------------------------------------
## dadocc Format:%12.0g
## n missing distinct Info Mean Gmd
## 2310 0 7 0.933 -0.4642 12.33
##
## lowest : -23.454 -11.494 -9.094 -3.454 2.316
## highest: -9.094 -3.454 2.316 16.196 29.226
##
## Value -23.454 -11.494 -9.094 -3.454 2.316 16.196 29.226
## Frequency 91 285 303 884 242 397 108
## Proportion 0.039 0.123 0.131 0.383 0.105 0.172 0.047
## --------------------------------------------------------------------------------
## dadunemp Format:%12.0g
## n missing distinct Info Sum Mean Gmd
## 2310 0 2 0.292 252 0.1091 0.1945
##
## --------------------------------------------------------------------------------
## daded Format:%12.0g
## n missing distinct Info Sum Mean Gmd
## 2310 0 2 0.507 497 0.2152 0.3379
##
## --------------------------------------------------------------------------------
## momed Format:%12.0g
## n missing distinct Info Sum Mean Gmd
## 2310 0 2 0.56 574 0.2485 0.3736
##
## --------------------------------------------------------------------------------
## male Format:%12.0g
## n missing distinct Info Sum Mean Gmd
## 2310 0 2 0.749 1109 0.4801 0.4994
##
## --------------------------------------------------------------------------------
## deprive Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 458 1 0.02167 0.6664 -0.8250 -0.6930
## .25 .50 .75 .90 .95
## -0.3970 -0.0620 0.2957 0.8410 1.1400
##
## lowest : -1.082 -1.048 -1.030 -0.983 -0.975, highest: 2.330 2.419 2.438 2.498 2.959
## --------------------------------------------------------------------------------
label functionlabel(scotland$neighid)="Neighborhood ID"
label(scotland$schid)="School ID"
label(scotland$attain)="Student Measure of Educational Attainment"
label(scotland$p7vrq)="Primary 7 Verbal Reasoning Quotient"
label(scotland$p7read)="Primary 7 Reading Test Scores"
label(scotland$dadocc)="School Mean of Dad's Occupation Score on Hope-Goldthorpe Scale"
label(scotland$dadunemp)="Dad Currently Unemployed"
label(scotland$daded)="Dad School After Age 15"
label(scotland$momed)="Mom School After Age 15"
label(scotland$male)="Male"
label(scotland$deprive)="Neighborhood Deprivation Score (Poverty, Health, and Housing)"
#Clean up data, make new data set and turn category variables into factor w/the following: ##At the student level: momed and daded; At the school level: dadocc (continuous); At neighborhood level: deprive (continuous).
scot.clean <- scotland %>%
mutate(.,
daded.fac = as_factor(daded),
momed.fac = as_factor(momed))
levels(scot.clean$daded.fac) = c("No","Yes")
levels(scot.clean$momed.fac) = c("No","Yes")
glimpse(scot.clean)
## Rows: 2,310
## Columns: 13
## $ neighid <labelled> 26, 26, 26, 26, 26, 27, 29, 29, 29, 29, 29, 29, 29, 29…
## $ schid <labelled> 20, 20, 20, 20, 20, 20, 18, 20, 20, 20, 20, 20, 20, 20…
## $ attain <labelled> 1.5177, -1.3276, 0.5610, 1.5177, -1.3276, -0.1325, 0.0…
## $ p7vrq <labelled> 17.972, -10.028, 2.972, 1.972, -1.028, 3.972, 8.972, -…
## $ p7read <labelled> 17.134, -27.866, 6.134, 11.134, -0.866, -0.866, 6.134,…
## $ dadocc <labelled> 16.196, -3.454, 2.316, -9.094, -3.454, -3.454, 16.196,…
## $ dadunemp <labelled> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ daded <labelled> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, …
## $ momed <labelled> 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, …
## $ male <labelled> 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, …
## $ deprive <labelled> -0.551, -0.551, -0.551, -0.551, -0.551, 0.147, -0.083,…
## $ daded.fac <fct> No, No, No, No, No, No, Yes, No, No, No, No, No, No, No, No…
## $ momed.fac <fct> No, No, No, No, No, Yes, Yes, No, No, No, No, No, No, No, N…
describe(scot.clean)
## scot.clean
##
## 13 Variables 2310 Observations
## --------------------------------------------------------------------------------
## neighid : Neighborhood ID Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 524 1 495.3 305.5 61.0 143.9
## .25 .50 .75 .90 .95
## 240.2 530.0 707.0 808.0 861.0
##
## lowest : 26 27 29 30 31, highest: 1092 1095 1096 1097 1098
## --------------------------------------------------------------------------------
## schid : School ID Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 17 0.995 10.01 7.174 0 2
## .25 .50 .75 .90 .95
## 5 9 16 19 20
##
## lowest : 0 1 2 3 5, highest: 16 17 18 19 20
##
## Value 0 1 2 3 5 6 7 8 9 10 13
## Frequency 146 22 146 159 155 101 286 112 136 133 92
## Proportion 0.063 0.010 0.063 0.069 0.067 0.044 0.124 0.048 0.059 0.058 0.040
##
## Value 15 16 17 18 19 20
## Frequency 190 111 154 91 102 174
## Proportion 0.082 0.048 0.067 0.039 0.044 0.075
## --------------------------------------------------------------------------------
## attain : Student Measure of Educational Attainment Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 14 0.987 0.0934 1.124 -1.3276 -1.3276
## .25 .50 .75 .90 .95
## -0.5812 0.1582 0.7350 1.5177 1.5177
##
## lowest : -1.3276 -0.5812 -0.3600 -0.1325 0.0293
## highest: 0.7350 0.9127 1.1405 1.5177 2.4151
## --------------------------------------------------------------------------------
## p7vrq : Primary 7 Verbal Reasoning Quotient Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 68 0.999 0.5058 11.95 -17.028 -13.028
## .25 .50 .75 .90 .95
## -7.028 -0.028 7.972 13.972 16.972
##
## lowest : -27.028 -26.028 -25.028 -24.028 -23.028
## highest: 35.972 36.972 40.972 41.972 42.972
## --------------------------------------------------------------------------------
## p7read : Primary 7 Reading Test Scores Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 61 1 -0.04435 15.8 -23.866 -17.866
## .25 .50 .75 .90 .95
## -9.866 -0.866 9.134 19.134 24.134
##
## lowest : -31.866 -30.866 -29.866 -28.866 -27.866
## highest: 24.134 25.134 26.134 27.134 28.134
## --------------------------------------------------------------------------------
## dadocc : School Mean of Dad's Occupation Score on Hope-Goldthorpe Scale Format:%12.0g
## n missing distinct Info Mean Gmd
## 2310 0 7 0.933 -0.4642 12.33
##
## lowest : -23.454 -11.494 -9.094 -3.454 2.316
## highest: -9.094 -3.454 2.316 16.196 29.226
##
## Value -23.454 -11.494 -9.094 -3.454 2.316 16.196 29.226
## Frequency 91 285 303 884 242 397 108
## Proportion 0.039 0.123 0.131 0.383 0.105 0.172 0.047
## --------------------------------------------------------------------------------
## dadunemp : Dad Currently Unemployed Format:%12.0g
## n missing distinct Info Sum Mean Gmd
## 2310 0 2 0.292 252 0.1091 0.1945
##
## --------------------------------------------------------------------------------
## daded : Dad School After Age 15 Format:%12.0g
## n missing distinct Info Sum Mean Gmd
## 2310 0 2 0.507 497 0.2152 0.3379
##
## --------------------------------------------------------------------------------
## momed : Mom School After Age 15 Format:%12.0g
## n missing distinct Info Sum Mean Gmd
## 2310 0 2 0.56 574 0.2485 0.3736
##
## --------------------------------------------------------------------------------
## male : Male Format:%12.0g
## n missing distinct Info Sum Mean Gmd
## 2310 0 2 0.749 1109 0.4801 0.4994
##
## --------------------------------------------------------------------------------
## deprive : Neighborhood Deprivation Score (Poverty, Health, and Housing) Format:%12.0g
## n missing distinct Info Mean Gmd .05 .10
## 2310 0 458 1 0.02167 0.6664 -0.8250 -0.6930
## .25 .50 .75 .90 .95
## -0.3970 -0.0620 0.2957 0.8410 1.1400
##
## lowest : -1.082 -1.048 -1.030 -0.983 -0.975, highest: 2.330 2.419 2.438 2.498 2.959
## --------------------------------------------------------------------------------
## daded.fac : Dad School After Age 15
## n missing distinct
## 2310 0 2
##
## Value No Yes
## Frequency 1813 497
## Proportion 0.785 0.215
## --------------------------------------------------------------------------------
## momed.fac : Mom School After Age 15
## n missing distinct
## 2310 0 2
##
## Value No Yes
## Frequency 1736 574
## Proportion 0.752 0.248
## --------------------------------------------------------------------------------
p7readggplot(data = scot.clean, mapping = aes(x = p7read)) +
geom_histogram(bins = 20) +
labs(title = "Distribution of Primary 7 Reading Test Scores",
x = "Standardized Primary 7 Reading Test Scores") +
theme_minimal()
###Using reading score (p7read) as the outcome, run null models for: school (schid), neighborhood (neighid), and additive null model combining school and neighborhood.
model.null.school <- lmer(p7read ~ (1|schid), REML = FALSE, data = scot.clean)
summary(model.null.school)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: p7read ~ (1 | schid)
## Data: scot.clean
##
## AIC BIC logLik deviance df.resid
## 18558.8 18576.0 -9276.4 18552.8 2307
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7611 -0.6895 -0.0027 0.6854 2.5664
##
## Random effects:
## Groups Name Variance Std.Dev.
## schid (Intercept) 18.75 4.33
## Residual 176.64 13.29
## Number of obs: 2310, groups: schid, 17
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.2912 1.0951 -0.266
icc.school <- 18.75/(18.75 + 176.64)
icc.school
## [1] 0.09596192
#Second, null neighborhood (neighid) model
model.null.neigh <- lmer(p7read ~ (1|neighid), REML = FALSE, data = scot.clean)
summary(model.null.neigh)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: p7read ~ (1 | neighid)
## Data: scot.clean
##
## AIC BIC logLik deviance df.resid
## 18606.3 18623.5 -9300.1 18600.3 2307
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.65885 -0.67581 -0.01035 0.67042 2.51256
##
## Random effects:
## Groups Name Variance Std.Dev.
## neighid (Intercept) 32.89 5.735
## Residual 160.37 12.664
## Number of obs: 2310, groups: neighid, 524
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.2407 0.3816 -0.631
icc.neigh <- 32.89/(32.89 + 160.37)
icc.neigh
## [1] 0.1701852
model.null.crossed <- lmer(p7read ~ (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.null.crossed)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: p7read ~ (1 | schid) + (1 | neighid)
## Data: scot.clean
##
## AIC BIC logLik deviance df.resid
## 18524.9 18547.8 -9258.4 18516.9 2306
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.61239 -0.66099 0.01158 0.66532 2.55698
##
## Random effects:
## Groups Name Variance Std.Dev.
## neighid (Intercept) 17.21 4.148
## schid (Intercept) 16.59 4.074
## Residual 160.36 12.663
## Number of obs: 2310, groups: neighid, 524; schid, 17
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.3701 1.0522 -0.352
icc.neigh.crossed <- 17.21/(17.21 + 16.59 + 160.36)
icc.neigh.crossed
## [1] 0.08863824
icc.school.crossed <- 16.59/(16.59 + 17.21 + 160.36)
icc.school.crossed
## [1] 0.08544499
##Add predictors to the model: at the student level, add momed and daded; at the school level, add dadocc; and at the neighborhood level, add deprive.
model.1 <- lmer(p7read ~ momed.fac + daded.fac + (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.1)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: p7read ~ momed.fac + daded.fac + (1 | schid) + (1 | neighid)
## Data: scot.clean
##
## AIC BIC logLik deviance df.resid
## 18424.4 18458.9 -9206.2 18412.4 2304
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.99961 -0.66409 0.01792 0.66336 2.63998
##
## Random effects:
## Groups Name Variance Std.Dev.
## neighid (Intercept) 13.24 3.639
## schid (Intercept) 13.06 3.614
## Residual 155.66 12.476
## Number of obs: 2310, groups: neighid, 524; schid, 17
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -2.1132 0.9580 -2.206
## momed.facYes 2.4043 0.7069 3.401
## daded.facYes 5.3704 0.7504 7.157
##
## Correlation of Fixed Effects:
## (Intr) mmd.fY
## momed.facYs -0.110
## daded.facYs -0.083 -0.460
model.2 <- lmer(p7read ~ momed.fac + daded.fac + dadocc + (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.2)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: p7read ~ momed.fac + daded.fac + dadocc + (1 | schid) + (1 |
## neighid)
## Data: scot.clean
##
## AIC BIC logLik deviance df.resid
## 18310.2 18350.5 -9148.1 18296.2 2303
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2651 -0.6765 0.0008 0.6506 2.6851
##
## Random effects:
## Groups Name Variance Std.Dev.
## neighid (Intercept) 7.921 2.814
## schid (Intercept) 9.900 3.146
## Residual 151.718 12.317
## Number of obs: 2310, groups: neighid, 524; schid, 17
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -1.38112 0.84752 -1.630
## momed.facYes 1.83651 0.69334 2.649
## daded.facYes 3.47317 0.75559 4.597
## dadocc 0.26808 0.02425 11.057
##
## Correlation of Fixed Effects:
## (Intr) mmd.fY ddd.fY
## momed.facYs -0.127
## daded.facYs -0.107 -0.428
## dadocc 0.078 -0.079 -0.242
model.3 <- lmer(p7read ~ momed.fac + daded.fac + dadocc + deprive + (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.3)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: p7read ~ momed.fac + daded.fac + dadocc + deprive + (1 | schid) +
## (1 | neighid)
## Data: scot.clean
##
## AIC BIC logLik deviance df.resid
## 18253.9 18299.9 -9119.0 18237.9 2302
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3799 -0.6834 0.0091 0.6557 3.1614
##
## Random effects:
## Groups Name Variance Std.Dev.
## neighid (Intercept) 3.716 1.928
## schid (Intercept) 6.381 2.526
## Residual 151.646 12.314
## Number of obs: 2310, groups: neighid, 524; schid, 17
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -1.15892 0.70581 -1.642
## momed.facYes 1.66801 0.68663 2.429
## daded.facYes 3.31275 0.74800 4.429
## dadocc 0.23752 0.02435 9.752
## deprive -3.84492 0.48529 -7.923
##
## Correlation of Fixed Effects:
## (Intr) mmd.fY ddd.fY dadocc
## momed.facYs -0.151
## daded.facYs -0.128 -0.427
## dadocc 0.085 -0.075 -0.232
## deprive -0.033 0.032 0.039 0.197
#Test an interaction between momed and daded.
model.4 <- lmer(p7read ~ momed.fac + daded.fac + dadocc + deprive + momed.fac:daded.fac + (1|schid) + (1|neighid), REML = FALSE, data = scot.clean)
summary(model.4)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula:
## p7read ~ momed.fac + daded.fac + dadocc + deprive + momed.fac:daded.fac +
## (1 | schid) + (1 | neighid)
## Data: scot.clean
##
## AIC BIC logLik deviance df.resid
## 18247.3 18299.0 -9114.6 18229.3 2301
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3143 -0.6715 0.0026 0.6539 3.1707
##
## Random effects:
## Groups Name Variance Std.Dev.
## neighid (Intercept) 3.513 1.874
## schid (Intercept) 6.506 2.551
## Residual 151.222 12.297
## Number of obs: 2310, groups: neighid, 524; schid, 17
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -1.37684 0.71429 -1.928
## momed.facYes 3.12965 0.84626 3.698
## daded.facYes 5.34180 1.01514 5.262
## dadocc 0.23530 0.02432 9.676
## deprive -3.75830 0.48407 -7.764
## momed.facYes:daded.facYes -4.24203 1.43861 -2.949
##
## Correlation of Fixed Effects:
## (Intr) mmd.fY ddd.fY dadocc depriv
## momed.facYs -0.181
## daded.facYs -0.163 0.143
## dadocc 0.087 -0.079 -0.192
## deprive -0.039 0.059 0.067 0.195
## mmd.fcYs:.Y 0.103 -0.587 -0.678 0.032 -0.057
lmerTest::rand(model.4)
## ANOVA-like table for random-effects: Single term deletions
##
## Model:
## p7read ~ momed.fac + daded.fac + dadocc + deprive + (1 | schid) +
## (1 | neighid) + momed.fac:daded.fac
## npar logLik AIC LRT Df Pr(>Chisq)
## <none> 9 -9114.6 18247
## (1 | schid) 8 -9135.3 18287 41.426 1 1.224e-10 ***
## (1 | neighid) 8 -9115.8 18248 2.362 1 0.1243
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interplot to visualize the interaction between deprive and dadocc…did not worklibrary(modelsummary)
##
## Attaching package: 'modelsummary'
## The following object is masked from 'package:Hmisc':
##
## Mean
library(broom.mixed)
## Registered S3 method overwritten by 'broom.mixed':
## method from
## tidy.gamlss broom
models <- list(model.null.neigh, model.null.school, model.null.crossed, model.1, model.2, model.3, model.4)
modelsummary(models, output = "markdown")
| Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
|---|---|---|---|---|---|---|---|
| (Intercept) | -0.241 | -0.291 | -0.370 | -2.113 | -1.381 | -1.159 | -1.377 |
| (0.382) | (1.095) | (1.052) | (0.958) | (0.848) | (0.706) | (0.714) | |
| sd__(Intercept) | 5.735 | 4.330 | |||||
| sd__Observation | 12.664 | 13.291 | |||||
| neighid sd__(Intercept) | 4.148 | 3.639 | 2.814 | 1.928 | 1.874 | ||
| schid sd__(Intercept) | 4.074 | 3.614 | 3.146 | 2.526 | 2.551 | ||
| Residual sd__Observation | 12.663 | 12.476 | 12.317 | 12.314 | 12.297 | ||
| momed.facYes | 2.404 | 1.837 | 1.668 | 3.130 | |||
| (0.707) | (0.693) | (0.687) | (0.846) | ||||
| daded.facYes | 5.370 | 3.473 | 3.313 | 5.342 | |||
| (0.750) | (0.756) | (0.748) | (1.015) | ||||
| dadocc | 0.268 | 0.238 | 0.235 | ||||
| (0.024) | (0.024) | (0.024) | |||||
| deprive | -3.845 | -3.758 | |||||
| (0.485) | (0.484) | ||||||
| momed.facYes × daded.facYes | -4.242 | ||||||
| (1.439) | |||||||
| AIC | 18606.3 | 18558.8 | 18524.9 | 18424.4 | 18310.2 | 18253.9 | 18247.3 |
| BIC | 18623.5 | 18576.0 | 18547.8 | 18458.9 | 18350.5 | 18299.9 | 18299.0 |
| Log.Lik. | -9300.147 | -9276.398 | -9258.426 | -9206.212 | -9148.124 | -9118.970 | -9114.635 |