library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
## ✓ tibble 3.0.6 ✓ dplyr 1.0.3
## ✓ tidyr 1.1.2 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
str(airquality)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
mean(airquality$Temp)
## [1] 77.88235
mean(airquality[,4])
## [1] 77.88235
median(airquality$Temp)
## [1] 79
sd(airquality$Wind)
## [1] 3.523001
var(airquality$Wind)
## [1] 12.41154
airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"
str(airquality)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : chr "May" "May" "May" "May" ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
summary(airquality)
## Ozone Solar.R Wind Temp
## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
## Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
## NA's :37 NA's :7
## Month Day
## Length:153 Min. : 1.0
## Class :character 1st Qu.: 8.0
## Mode :character Median :16.0
## Mean :15.8
## 3rd Qu.:23.0
## Max. :31.0
##
airquality$Month<-factor(airquality$Month, levels=c("May", "June","July", "August", "September"))
p1 <- qplot(data = airquality,Temp,fill = Month,geom = "histogram", bins = 20)
p1
p2 <- airquality %>%
ggplot(aes(x=Temp, fill=Month)) +
geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p2
p3 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Temperatures") +
xlab("Months") +
ylab("Frequency") +
geom_boxplot() +
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3
p4 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Temperatures") +
xlab("Temperatures") +
ylab("Frequency") +
geom_boxplot()+
scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4
p5 <- airquality %>%
ggplot(aes(Temp, Wind, color = Month)) +
ggtitle("Temperatures each month from May to September") +
xlab("Temp") +
ylab("Wind") +
geom_point(size = 1.5) +
facet_grid(Month ~ .)
p5
p5 + facet_grid(. ~ Month)
A useful feature in ggplot is called facets. The idea is to be able to create separate plots which show subsets of a dataset divided by a factor variable. In the plot above, I have five different scatterplots of the wind vs temperature plot divided out by the different months. The result is a panel plot to look at separate subsets together.
The second plot is to show that even within the same visualization sometimes there are features that make it easier or harder to understand the data. For example, in this case the points can be more easily interpreted when plots are divided up into rows rather than columns.