Aim: find genes appear in overlapping modules of the 66 and 57b libraries.

before we continue to explore the genes in Magenta module (in the 66 analysis), we need to be sure that they overlap those in the matching module in the female-only analysis (57 libraries).

Finding matching modules (66 all libraries vs. 57 female libraries)

#over lap the two modules tables, to check if the modules contain the same genes
# to avoid confusion, i used the module colors for the 66 libs ("moduleColors" 15 modules + grey=genes with no module), and the modules numbers for the 57 libs ("moduleLabels_57" 14 modules + "zero" = genes with no module):
compareModules <- overlapTable(
    moduleColors, moduleLabels_57, 
    na.rm = FALSE, ignore = NULL, 
    levels1 = NULL, levels2 = NULL)
compareModules
## $countTable
##               0    1   2   3   4   5   6   7  8   9 10 11 12 13 14
## black         7   10   1   5   5   0   1   1  9 108  0 18  0  0  6
## blue          9 2100  56 106   1 183  37  16  3   0  7  0 66  0  0
## brown        87  288 108  65 558  31  46  38 15  40 15 10  5  7  7
## cyan          2    3   0   3   6   0   0   2  1   9  0  7  0  0  2
## green         5   36 411   3   0   0  16   0  0   0  2  0  0  1  0
## greenyellow   0    0   0   0   0   0   0   1  1   4  0 59  0  0  0
## grey         82   21  24  17   4   6   7   8  8   1  5  5  4  2  1
## magenta       2    2   8  15   0   0   0  40  0   0 15  0  1  3  0
## midnightblue  0   31   0   0   0   0   0   0  0   0  0  0  0  0  0
## pink          0    1   0   0   1   0   1   0 95   0  0  1  0  1  0
## purple        0    1   3   1   0   0   6   0  0   0 30  0  0 45  0
## red           3    0   2  11   0   1   2 163  0   0  0  2  2  0  0
## salmon        0   10   3   0   0   0   0   0  0   0 24  0  0  0  0
## tan           0    0   0   0   0   0   0   0 46   0  0  2  0  0  0
## turquoise     6 3022 127 404   1   0  10  26  8   0 15  4  2  0  0
## yellow       80  384  50  73  48 131 212  33 72  16 24 26 23  6 26
## 
## $pTable
##                         0             1          2            3          4
## black        1.944931e-01  1.000000e+00 0.99999908 9.928061e-01 0.98120013
## blue         1.000000e+00 1.997788e-186 1.00000000 1.000000e+00 1.00000000
## brown        1.120000e-15  1.000000e+00 0.27505652 9.992095e-01 0.00000000
## cyan         2.517280e-01  1.000000e+00 1.00000000 4.344484e-01 0.01779718
## green        9.972806e-01  1.000000e+00 0.00000000 1.000000e+00 1.00000000
## greenyellow  1.000000e+00  1.000000e+00 1.00000000 1.000000e+00 1.00000000
## grey         1.153730e-78  1.000000e+00 0.01562078 1.834318e-01 0.99810637
## magenta      6.916210e-01  1.000000e+00 0.34764024 6.781161e-04 1.00000000
## midnightblue 1.000000e+00  3.749102e-08 1.00000000 1.000000e+00 1.00000000
## pink         1.000000e+00  1.000000e+00 1.00000000 1.000000e+00 0.99819000
## purple       1.000000e+00  1.000000e+00 0.96723093 9.978422e-01 1.00000000
## red          8.919785e-01  1.000000e+00 0.99999543 7.383876e-01 1.00000000
## salmon       1.000000e+00  9.999615e-01 0.55401504 1.000000e+00 1.00000000
## tan          1.000000e+00  1.000000e+00 1.00000000 1.000000e+00 1.00000000
## turquoise    1.000000e+00  0.000000e+00 1.00000000 3.034538e-35 1.00000000
## yellow       1.600954e-14  1.000000e+00 0.99999997 8.912700e-01 0.99975378
##                         5             6             7             8
## black        1.000000e+00  9.969253e-01  9.963410e-01  2.889056e-02
## blue         5.951636e-28  1.000000e+00  1.000000e+00  1.000000e+00
## brown        9.939640e-01  3.667367e-01  7.849680e-01  9.999474e-01
## cyan         1.000000e+00  1.000000e+00  3.091547e-01  5.909919e-01
## green        1.000000e+00  4.992165e-01  1.000000e+00  1.000000e+00
## greenyellow  1.000000e+00  1.000000e+00  8.801336e-01  8.103921e-01
## grey         6.655179e-01  4.645189e-01  2.870394e-01  1.193793e-01
## magenta      1.000000e+00  1.000000e+00  2.191298e-37  1.000000e+00
## midnightblue 1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00
## pink         1.000000e+00  9.656359e-01  1.000000e+00 3.006307e-153
## purple       1.000000e+00  6.429146e-02  1.000000e+00  1.000000e+00
## red          9.985872e-01  9.862464e-01 3.329534e-236  1.000000e+00
## salmon       1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00
## tan          1.000000e+00  1.000000e+00  1.000000e+00  4.684758e-73
## turquoise    1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00
## yellow       1.291603e-36 1.276331e-115  8.544321e-01  6.949936e-13
##                          9           10            11           12           13
## black        2.012823e-161 1.000000e+00  7.056549e-12 1.000000e+00 1.000000e+00
## blue          1.000000e+00 1.000000e+00  1.000000e+00 7.451910e-17 1.000000e+00
## brown         2.564125e-04 7.874644e-01  9.838230e-01 9.981624e-01 7.489749e-01
## cyan          5.631826e-09 1.000000e+00  2.769478e-07 1.000000e+00 1.000000e+00
## green         1.000000e+00 9.887437e-01  1.000000e+00 1.000000e+00 9.544245e-01
## greenyellow   2.622762e-02 1.000000e+00 1.779790e-110 1.000000e+00 1.000000e+00
## grey          9.682592e-01 1.203230e-01  1.123483e-01 1.330191e-01 3.517466e-01
## magenta       1.000000e+00 3.483424e-13  1.000000e+00 5.820796e-01 1.715613e-02
## midnightblue  1.000000e+00 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
## pink          1.000000e+00 1.000000e+00  7.336032e-01 1.000000e+00 4.724209e-01
## purple        1.000000e+00 1.487365e-35  1.000000e+00 1.000000e+00 6.969258e-84
## red           1.000000e+00 1.000000e+00  7.033302e-01 5.611040e-01 1.000000e+00
## salmon        1.000000e+00 3.985004e-37  1.000000e+00 1.000000e+00 1.000000e+00
## tan           1.000000e+00 1.000000e+00  1.299666e-01 1.000000e+00 1.000000e+00
## turquoise     1.000000e+00 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
## yellow        9.020444e-01 2.877257e-02  6.584196e-03 1.641330e-03 7.911932e-01
##                        14
## black        6.305832e-05
## blue         1.000000e+00
## brown        2.928756e-01
## cyan         8.957763e-03
## green        1.000000e+00
## greenyellow  1.000000e+00
## grey         5.545167e-01
## magenta      1.000000e+00
## midnightblue 1.000000e+00
## pink         1.000000e+00
## purple       1.000000e+00
## red          1.000000e+00
## salmon       1.000000e+00
## tan          1.000000e+00
## turquoise    1.000000e+00
## yellow       1.321401e-14
# using this function i was able to match modules from the analysis including all 66 libraries, and the analysis of females only (57 libraries). 
# matching modules of the two analyses
#                       66 all  == in 57 females:
# (module number 0)  MM.grey == MM.grey (module number 0)
# (module number 1)  MM.turquoise == MM.turquoise (module number 1)
# (module number 2)  MM.blue == MM.turquoise (module number 1)
# (module number 3)  MM.brown == MM.grey (module number 0)
# (module number 4)  MM.yellow == MM.red (module number 6)
# (module number 5)  MM.green == MM.blue (module number 2)
# (module number 6)  MM.red == MM.black (module number 7)
# (module number 7)  MM.black == MM.magenta (module number 9)
# (module number 8)  MM.pink == MM.pink (module number 8)
# (module number 9)  MM.magenta == MM.black (module number 7)
# (module number 10) MM.purple == MM.salmon (module number 13)
# (module number 11) MM.greenyellow == MM.greenyellow (module number 11)
# (module number 12) MM.tan == MM.pink (module number 8)ma
# (module number 13) MM.salmon == MM.purple (module number 10)
# (module number 14) MM.cyan == MM.magenta (module number 9)

according to “Module-Trait interaction”, Magenta module looks interesting, as it have a negative correlation with DWVa, and positive correlation with VDV2. the matching module of Magenta (66libs) is black (57libs). So we gonna overlap the black module from 57, to magenta genes, from 66, using inner_join(),to get a table containing the overlapping genes, their geneTraitSignificance (for DWVa, ARV_2 and VDV2), geneModuleMembership, and Intramodular connectivity

geneInfoMagenta_66 = data.frame(
  module = moduleColors,
  geneTraitSignificance_66,
  geneModuleMembership_66,
  IntraModCon = Alldegrees1_66$kWithin) %>%
  dplyr::select(c(module, IntraModCon, MMmagenta, GS.DWVa, GS.VDV2, GS.ARV_2)) %>%
  dplyr::filter(module == "magenta") %>%
  rownames_to_column("genes")
  
geneInfoBlack_57 = data.frame(
  module = moduleColors_57,
  geneTraitSignificance_57,
  geneModuleMembership_57,
  IntraModCon = Alldegrees1_57$kWithin) %>%
  dplyr::select(c(module, IntraModCon, MMblack, GS.DWVa, GS.VDV2, GS.ARV_2)) %>%
  dplyr::filter(module%in% c("black")) %>%
  rownames_to_column("genes")

# make a table of the overlapping genes 
overlap <- inner_join(geneInfoMagenta_66, geneInfoBlack_57, by = "genes")
 #change the columns names to specify from which analysis it was taken (66libs or 57libs)
 overlap <- overlap %>%
   dplyr::rename(module_66 = module.x,
                 module_57 = module.y,
                 IntraModCon_66 = IntraModCon.x,
                 IntraModCon_57 = IntraModCon.y,
                 GS.DWVa_66 = GS.DWVa.x,
                 GS.DWVa_57 = GS.DWVa.y,
                 GS.VDV2_66 = GS.VDV2.x,
                 GS.VDV2_57 = GS.VDV2.y,
                 GS.ARV_2_66 = GS.ARV_2.x,
                 GS.ARV_2_57 = GS.ARV_2.y)
nrow(overlap)  
## [1] 40
overlap
##        genes module_66 IntraModCon_66 MMmagenta GS.DWVa_66 GS.VDV2_66
## 1  111243784   magenta      11.223440 0.8695517 -0.2925204  0.6398958
## 2  111243925   magenta       4.977129 0.7149557 -0.2427469  0.4471420
## 3  111243999   magenta       4.241030 0.7307336 -0.2982548  0.4398575
## 4  111244168   magenta      17.163039 0.9124374 -0.4469089  0.7614299
## 5  111244366   magenta       8.195112 0.8114501 -0.2901975  0.5408519
## 6  111244889   magenta       9.047380 0.8363032 -0.2406085  0.4918116
## 7  111244965   magenta      11.223471 0.8127270 -0.2927762  0.6688896
## 8  111245094   magenta       5.241102 0.7606702 -0.3232085  0.6049363
## 9  111245189   magenta       6.223219 0.7316771 -0.1443773  0.7684324
## 10 111245224   magenta      19.225611 0.9438103 -0.5257100  0.6266771
## 11 111245582   magenta      10.819486 0.8437882 -0.3930408  0.5766143
## 12 111245627   magenta      13.826894 0.8747785 -0.5259656  0.4969625
## 13 111246014   magenta      15.741042 0.9034515 -0.3590890  0.6036798
## 14 111246302   magenta       8.552619 0.7739854 -0.3738306  0.5160128
## 15 111246841   magenta      13.968961 0.8861245 -0.1939304  0.7451658
## 16 111247393   magenta       3.646495 0.7145910 -0.4529772  0.6247344
## 17 111248051   magenta       5.443256 0.7283844 -0.1430254  0.7403198
## 18 111248663   magenta      13.455119 0.8688504 -0.6526831  0.5182510
## 19 111249529   magenta      18.248457 0.9232903 -0.5461694  0.5990873
## 20 111249640   magenta      10.505546 0.8062042 -0.3610908  0.6917785
## 21 111250285   magenta       5.554644 0.7489627 -0.2247173  0.6877988
## 22 111250955   magenta       4.535455 0.7238696 -0.2948846  0.6458510
## 23 111251058   magenta      18.325534 0.9211589 -0.5047920  0.5369363
## 24 111251111   magenta      13.781119 0.8587504 -0.3695021  0.6502168
## 25 111251804   magenta      15.157361 0.8791005 -0.5437127  0.5160739
## 26 111252023   magenta      13.973837 0.8661814 -0.5672668  0.6133908
## 27 111252053   magenta      14.862509 0.8963405 -0.4178445  0.5145422
## 28 111252649   magenta      12.697701 0.8870761 -0.4561971  0.5753213
## 29 111252854   magenta      17.943261 0.9222455 -0.4752507  0.6964539
## 30 111253379   magenta       3.682578 0.6949258 -0.3074540  0.5421018
## 31 111253800   magenta      16.094312 0.9034662 -0.4544488  0.5971160
## 32 111253808   magenta      13.508291 0.8650949 -0.6047886  0.5006907
## 33 111253948   magenta       5.039276 0.7178141 -0.3471731  0.6011234
## 34 111254122   magenta      11.418235 0.8774034 -0.3206842  0.6280394
## 35 111254141   magenta      13.238670 0.8526678 -0.3209055  0.7659278
## 36 111254601   magenta       8.248668 0.7797701 -0.2432382  0.7774221
## 37 111254776   magenta      13.196680 0.8765098 -0.4034354  0.6133320
## 38 111255374   magenta      14.757598 0.8823629 -0.3964158  0.6671085
## 39 111255470   magenta      16.037453 0.9044367 -0.4818122  0.6461752
## 40 111255627   magenta       6.632640 0.8014901 -0.2709482  0.4003038
##     GS.ARV_2_66 module_57 IntraModCon_57   MMblack GS.DWVa_57 GS.VDV2_57
## 1  -0.129847510     black      22.198350 0.7409757 -0.1943919  0.6597310
## 2  -0.391770250     black      22.088913 0.7607896 -0.2090687  0.5748613
## 3  -0.112730602     black      11.075776 0.6563008 -0.1522141  0.4569898
## 4  -0.171302433     black      49.723289 0.8580801 -0.3877705  0.8136362
## 5  -0.358470771     black      22.937088 0.7655673 -0.1417271  0.6444956
## 6  -0.240698081     black      12.616443 0.6405715 -0.1229824  0.5257225
## 7  -0.324538421     black      52.272521 0.8857001 -0.2032580  0.7670656
## 8   0.134047618     black       8.915815 0.5596773 -0.2762196  0.5807265
## 9  -0.212014499     black      28.195801 0.7603835 -0.1371829  0.8240359
## 10 -0.224120281     black      29.806858 0.7578145 -0.4297188  0.7010731
## 11 -0.302416626     black      27.375348 0.7780039 -0.2685444  0.6611281
## 12 -0.276748922     black      30.693962 0.7879235 -0.4369329  0.6151987
## 13 -0.214597145     black      33.400666 0.7981056 -0.3258962  0.7015680
## 14 -0.163662362     black      24.511668 0.7523032 -0.3946526  0.6608939
## 15 -0.236442918     black      54.124280 0.8862224 -0.1341113  0.8185060
## 16 -0.046751586     black      11.589818 0.6705948 -0.4482936  0.6491722
## 17  0.148530942     black      32.074934 0.7986558 -0.1266740  0.7410321
## 18 -0.194953621     black      19.074242 0.6801872 -0.5747656  0.5810407
## 19 -0.329921444     black      34.749502 0.7903098 -0.4706368  0.7192397
## 20 -0.258344046     black      56.341325 0.8916551 -0.2882585  0.7901045
## 21  0.018579016     black      29.566964 0.7943232 -0.1039504  0.7123644
## 22  0.041280877     black      14.494932 0.6693379 -0.2837554  0.6675542
## 23 -0.288503815     black      27.844484 0.7489284 -0.4479580  0.6478006
## 24 -0.247056774     black      39.694638 0.8356024 -0.3193897  0.7651151
## 25 -0.337826325     black      17.486192 0.6553006 -0.4825198  0.6164134
## 26 -0.309702151     black      25.692861 0.7391902 -0.5140609  0.7157492
## 27 -0.267409457     black      15.371700 0.6452337 -0.3593588  0.5857436
## 28 -0.064013137     black      32.744145 0.7993151 -0.3623834  0.6194092
## 29 -0.282119472     black      41.119880 0.8276113 -0.4351661  0.8064760
## 30  0.260606048     black       9.704401 0.5867435 -0.2413451  0.5273003
## 31 -0.299018590     black      34.594783 0.8077115 -0.3511759  0.6996857
## 32 -0.235716934     black      15.657505 0.6563528 -0.5229291  0.5900728
## 33 -0.369352756     black      21.436117 0.7513489 -0.3130022  0.7144338
## 34 -0.240210917     black      31.362879 0.7999102 -0.2610105  0.6896842
## 35 -0.321845412     black      51.516648 0.8738305 -0.2592884  0.8677597
## 36  0.026391573     black      55.251005 0.8943184 -0.2240337  0.7831164
## 37 -0.009339968     black      44.403272 0.8433046 -0.3374515  0.6571393
## 38 -0.258446908     black      42.451929 0.8290113 -0.3530532  0.7453012
## 39 -0.134350234     black      32.857336 0.7820477 -0.4449958  0.7108208
## 40 -0.301184133     black      15.041197 0.7044843 -0.2142499  0.5115095
##    GS.ARV_2_57
## 1   -0.4165116
## 2   -0.2430201
## 3   -0.1764775
## 4   -0.3362780
## 5   -0.4394230
## 6   -0.4722398
## 7   -0.3949422
## 8   -0.4222172
## 9   -0.4360924
## 10  -0.2661796
## 11  -0.3216513
## 12  -0.1085196
## 13  -0.2846728
## 14  -0.2563243
## 15  -0.4523176
## 16  -0.1961815
## 17  -0.4208976
## 18  -0.1336256
## 19  -0.2633597
## 20  -0.2238572
## 21  -0.4346871
## 22  -0.2533139
## 23  -0.2802167
## 24  -0.2908267
## 25  -0.3081682
## 26  -0.2723798
## 27  -0.3800227
## 28  -0.1398686
## 29  -0.2810398
## 30  -0.2036610
## 31  -0.2702058
## 32  -0.1969170
## 33  -0.4263867
## 34  -0.2594001
## 35  -0.4086162
## 36  -0.2423346
## 37  -0.1090063
## 38  -0.3177539
## 39  -0.2549213
## 40  -0.3069202
# we have 40 overlapping genes in the magenat and balck modules, as the "overlapTable()" function computed.

# add gene annotation:
# load the annotation file:
annot_varroa <- read_csv("/Users/nuriteliash/Documents/GitHub/varroa-virus-networks/data/annot_varroa.csv", col_names = TRUE, )
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   Name = col_character(),
##   Accession = col_character(),
##   Start = col_double(),
##   Stop = col_double(),
##   Strand = col_character(),
##   GeneID = col_double(),
##   Locus = col_character(),
##   `Locus tag` = col_character(),
##   `Protein product` = col_character(),
##   Length = col_double(),
##   `Protein Name` = col_character()
## )
# remove the "LOC" from the gene name
annot_varroa$Locus <- str_replace(annot_varroa$Locus, "LOC", '')
# and change the col name to "genes", so it will the same as in the "overlap" table
colnames(annot_varroa)[which(names(annot_varroa) == "Locus")] <- "genes"
head(annot_varroa)
## # A tibble: 6 x 11
##   Name  Accession  Start   Stop Strand GeneID genes `Locus tag` `Protein produc…
##   <chr> <chr>      <dbl>  <dbl> <chr>   <dbl> <chr> <chr>       <chr>           
## 1 Un    NW_01921… 3.38e7 3.39e7 -      1.11e8 1112… -           XP_022672900.1  
## 2 Un    NW_01921… 3.38e7 3.39e7 -      1.11e8 1112… -           XP_022672902.1  
## 3 Un    NW_01921… 3.38e7 3.39e7 -      1.11e8 1112… -           XP_022672903.1  
## 4 Un    NW_01921… 3.38e7 3.39e7 -      1.11e8 1112… -           XP_022672904.1  
## 5 Un    NW_01921… 3.38e7 3.39e7 -      1.11e8 1112… -           XP_022672905.1  
## 6 Un    NW_01921… 3.38e7 3.39e7 -      1.11e8 1112… -           XP_022672908.1  
## # … with 2 more variables: Length <dbl>, `Protein Name` <chr>
#now join by "genes" name (INNER JOIN: returns rows when there is a match in both tables)
overlap_annot <- inner_join(overlap, annot_varroa, by = "genes") %>% 
  dplyr::select(c(genes, module_66, module_57,
                 IntraModCon_66, 
                 IntraModCon_57, 
                 GS.DWVa_66,  
                 GS.DWVa_57, 
                 GS.VDV2_66,
                 GS.VDV2_57, 
                 GS.ARV_2_66,
                 GS.ARV_2_57, Name, Accession, 'Protein product', Length, 'Protein Name'))

# and filter out duplicated genes
overlap_annot <-overlap_annot[!duplicated(overlap_annot[,'genes']),] 

nrow(overlap_annot)
## [1] 40
write_csv(x = as.data.frame(overlap_annot), "results/overlap_annot.csv")

check if the old hubgenes overlap in the new ones

#load the former hub-genes:
hub_old <- read_csv("/Users/nuriteliash/Documents/GitHub/varroa-virus-networks/data/hub_annot_old.csv", col_names = TRUE, ) 
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   genes = col_double(),
##   virus.x = col_character(),
##   `Protein Name` = col_character()
## )
hub_old$genes <- as.character(hub_old$genes)

#make a data.frame of all genes with modules:
all.genes.66 <- data.frame(
  module = moduleColors,
  geneTraitSignificance_66,
  geneModuleMembership_66,
  IntraModCon = Alldegrees1_66$kWithin) %>%
  dplyr::select(c(module, IntraModCon, MMmagenta, GS.DWVa, GS.VDV2, GS.ARV_2)) %>%
  rownames_to_column("genes")

# how many of the hub_old genes exist in the magenta module?
#return all rows from x, and all columns from x and y. 
f <- left_join(geneInfoMagenta_66, hub_old, by = "genes")
f
##        genes  module IntraModCon MMmagenta     GS.DWVa   GS.VDV2     GS.ARV_2
## 1  111242876 magenta    6.304724 0.7781005 -0.55860975 0.3865490 -0.095821062
## 2  111242941 magenta    3.358378 0.6740230 -0.03559228 0.4985539 -0.373804028
## 3  111243035 magenta    7.128138 0.7715768 -0.54448573 0.2902412 -0.277404593
## 4  111243305 magenta    4.285400 0.6966181 -0.36694122 0.3647269  0.011610041
## 5  111243700 magenta    6.890664 0.7797593 -0.50750752 0.1999109 -0.380266319
## 6  111243784 magenta   11.223440 0.8695517 -0.29252038 0.6398958 -0.129847510
## 7  111243925 magenta    4.977129 0.7149557 -0.24274692 0.4471420 -0.391770250
## 8  111243999 magenta    4.241030 0.7307336 -0.29825475 0.4398575 -0.112730602
## 9  111244078 magenta    3.374151 0.6919971 -0.33533175 0.3611966 -0.208142504
## 10 111244149 magenta   16.988361 0.9304244 -0.48439634 0.4236942 -0.304095303
## 11 111244168 magenta   17.163039 0.9124374 -0.44690886 0.7614299 -0.171302433
## 12 111244366 magenta    8.195112 0.8114501 -0.29019746 0.5408519 -0.358470771
## 13 111244889 magenta    9.047380 0.8363032 -0.24060850 0.4918116 -0.240698081
## 14 111244895 magenta    2.068979 0.6492903 -0.28659303 0.3932824 -0.141030907
## 15 111244965 magenta   11.223471 0.8127270 -0.29277621 0.6688896 -0.324538421
## 16 111245018 magenta   10.260275 0.8132027 -0.41876209 0.4578334 -0.226893844
## 17 111245094 magenta    5.241102 0.7606702 -0.32320849 0.6049363  0.134047618
## 18 111245189 magenta    6.223219 0.7316771 -0.14437728 0.7684324 -0.212014499
## 19 111245224 magenta   19.225611 0.9438103 -0.52570997 0.6266771 -0.224120281
## 20 111245319 magenta    7.817929 0.8013402 -0.24848118 0.6531090 -0.067417949
## 21 111245376 magenta    4.876569 0.7354068 -0.19736208 0.2936822 -0.379812078
## 22 111245582 magenta   10.819486 0.8437882 -0.39304075 0.5766143 -0.302416626
## 23 111245627 magenta   13.826894 0.8747785 -0.52596560 0.4969625 -0.276748922
## 24 111245837 magenta   16.026146 0.9163486 -0.58327073 0.4521852 -0.127271585
## 25 111246014 magenta   15.741042 0.9034515 -0.35908905 0.6036798 -0.214597145
## 26 111246302 magenta    8.552619 0.7739854 -0.37383063 0.5160128 -0.163662362
## 27 111246491 magenta    4.731972 0.7243380 -0.27915085 0.3901429 -0.072605013
## 28 111246841 magenta   13.968961 0.8861245 -0.19393037 0.7451658 -0.236442918
## 29 111246969 magenta   17.838370 0.9346302 -0.58194475 0.4790201 -0.212437048
## 30 111247339 magenta    4.523613 0.7229202 -0.34663930 0.4761560 -0.151848387
## 31 111247393 magenta    3.646495 0.7145910 -0.45297715 0.6247344 -0.046751586
## 32 111247862 magenta    6.542614 0.7758697 -0.33731582 0.5054671  0.109744742
## 33 111248051 magenta    5.443256 0.7283844 -0.14302545 0.7403198  0.148530942
## 34 111248124 magenta    3.901441 0.6893971 -0.42204025 0.3537784  0.283866463
## 35 111248148 magenta    6.149397 0.7606247 -0.57545123 0.4151146 -0.041018485
## 36 111248568 magenta    1.829990 0.5807608 -0.26411587 0.4060202 -0.306289459
## 37 111248663 magenta   13.455119 0.8688504 -0.65268311 0.5182510 -0.194953621
## 38 111248915 magenta    4.459002 0.7267045 -0.29229990 0.3312422 -0.038655649
## 39 111249021 magenta    8.141350 0.8077766 -0.44375069 0.3634997 -0.091720769
## 40 111249201 magenta   11.098487 0.8507984 -0.50830265 0.2503012 -0.247125145
## 41 111249253 magenta    8.251518 0.8020107 -0.40969162 0.6600876 -0.324010195
## 42 111249484 magenta    4.464690 0.7055220 -0.42598659 0.3450115 -0.203629418
## 43 111249529 magenta   18.248457 0.9232903 -0.54616945 0.5990873 -0.329921444
## 44 111249604 magenta    4.735817 0.7003771 -0.45218043 0.1925725 -0.085875225
## 45 111249640 magenta   10.505546 0.8062042 -0.36109078 0.6917785 -0.258344046
## 46 111249853 magenta   12.252758 0.8805647 -0.43067943 0.3819218 -0.112479806
## 47 111250109 magenta    8.528234 0.8164129 -0.47870266 0.3976912 -0.011172649
## 48 111250180 magenta    4.102724 0.6885171 -0.23015673 0.5069783  0.097909207
## 49 111250285 magenta    5.554644 0.7489627 -0.22471728 0.6877988  0.018579016
## 50 111250305 magenta    4.684375 0.7219795 -0.32741370 0.4934716 -0.293294652
## 51 111250595 magenta    4.709594 0.7414470 -0.45882561 0.3259767 -0.080592986
## 52 111250955 magenta    4.535455 0.7238696 -0.29488456 0.6458510  0.041280877
## 53 111250993 magenta    4.629426 0.6872982 -0.23804344 0.5113298  0.248894530
## 54 111251058 magenta   18.325534 0.9211589 -0.50479197 0.5369363 -0.288503815
## 55 111251111 magenta   13.781119 0.8587504 -0.36950213 0.6502168 -0.247056774
## 56 111251195 magenta    6.102890 0.7458169 -0.23543342 0.5127819 -0.071340245
## 57 111251417 magenta    4.786996 0.7257890 -0.28697745 0.2185357 -0.421669075
## 58 111251520 magenta    5.255670 0.7425263 -0.25489980 0.3141708 -0.244275808
## 59 111251804 magenta   15.157361 0.8791005 -0.54371268 0.5160739 -0.337826325
## 60 111252023 magenta   13.973837 0.8661814 -0.56726682 0.6133908 -0.309702151
## 61 111252053 magenta   14.862509 0.8963405 -0.41784453 0.5145422 -0.267409457
## 62 111252065 magenta    7.885429 0.8012434 -0.39036880 0.5699691  0.045579925
## 63 111252397 magenta    5.193537 0.7380677 -0.55890989 0.5028148  0.319286128
## 64 111252565 magenta    8.306397 0.7789317 -0.43534521 0.2731924 -0.307079182
## 65 111252592 magenta    5.891810 0.7337840 -0.32871356 0.1819197 -0.385443756
## 66 111252595 magenta    9.411344 0.8314912 -0.49628367 0.3365239 -0.226382522
## 67 111252649 magenta   12.697701 0.8870761 -0.45619707 0.5753213 -0.064013137
## 68 111252854 magenta   17.943261 0.9222455 -0.47525067 0.6964539 -0.282119472
## 69 111253109 magenta   12.628946 0.8589323 -0.51295405 0.3590835 -0.274514767
## 70 111253281 magenta    6.835902 0.7420314 -0.35210159 0.2102720 -0.445180599
## 71 111253379 magenta    3.682578 0.6949258 -0.30745403 0.5421018  0.260606048
## 72 111253800 magenta   16.094312 0.9034662 -0.45444879 0.5971160 -0.299018590
## 73 111253808 magenta   13.508291 0.8650949 -0.60478863 0.5006907 -0.235716934
## 74 111253948 magenta    5.039276 0.7178141 -0.34717309 0.6011234 -0.369352756
## 75 111254070 magenta    7.548068 0.7705447 -0.58683486 0.1324167 -0.342197236
## 76 111254122 magenta   11.418235 0.8774034 -0.32068423 0.6280394 -0.240210917
## 77 111254126 magenta   11.503014 0.8601873 -0.64867282 0.3551917 -0.090396930
## 78 111254141 magenta   13.238670 0.8526678 -0.32090553 0.7659278 -0.321845412
## 79 111254343 magenta    2.212959 0.6291470 -0.22748056 0.3686377 -0.146417132
## 80 111254601 magenta    8.248668 0.7797701 -0.24323823 0.7774221  0.026391573
## 81 111254622 magenta    3.673205 0.6552071 -0.54754374 0.2970110  0.226340414
## 82 111254776 magenta   13.196680 0.8765098 -0.40343539 0.6133320 -0.009339968
## 83 111255263 magenta    6.030624 0.7449968 -0.56202488 0.2294823 -0.175801033
## 84 111255374 magenta   14.757598 0.8823629 -0.39641578 0.6671085 -0.258446908
## 85 111255470 magenta   16.037453 0.9044367 -0.48181219 0.6461752 -0.134350234
## 86 111255627 magenta    6.632640 0.8014901 -0.27094816 0.4003038 -0.301184133
##    virus.x               Protein Name
## 1     <NA>                       <NA>
## 2     <NA>                       <NA>
## 3     <NA>                       <NA>
## 4     <NA>                       <NA>
## 5     <NA>                       <NA>
## 6     <NA>                       <NA>
## 7     <NA>                       <NA>
## 8     <NA>                       <NA>
## 9     <NA>                       <NA>
## 10    <NA>                       <NA>
## 11    <NA>                       <NA>
## 12    <NA>                       <NA>
## 13    <NA>                       <NA>
## 14    <NA>                       <NA>
## 15    <NA>                       <NA>
## 16    <NA>                       <NA>
## 17    <NA>                       <NA>
## 18    <NA>                       <NA>
## 19    <NA>                       <NA>
## 20    <NA>                       <NA>
## 21    <NA>                       <NA>
## 22    <NA>                       <NA>
## 23    <NA>                       <NA>
## 24    <NA>                       <NA>
## 25    <NA>                       <NA>
## 26    <NA>                       <NA>
## 27    <NA>                       <NA>
## 28    <NA>                       <NA>
## 29    <NA>                       <NA>
## 30    <NA>                       <NA>
## 31    <NA>                       <NA>
## 32    <NA>                       <NA>
## 33    <NA>                       <NA>
## 34    <NA>                       <NA>
## 35    <NA>                       <NA>
## 36    <NA>                       <NA>
## 37    <NA>                       <NA>
## 38    <NA>                       <NA>
## 39    <NA>                       <NA>
## 40    <NA>                       <NA>
## 41    <NA>                       <NA>
## 42    <NA>                       <NA>
## 43    <NA>                       <NA>
## 44    <NA>                       <NA>
## 45    <NA>                       <NA>
## 46    <NA>                       <NA>
## 47    <NA>                       <NA>
## 48    <NA>                       <NA>
## 49    <NA>                       <NA>
## 50    <NA>                       <NA>
## 51    <NA>                       <NA>
## 52    <NA>                       <NA>
## 53    <NA>                       <NA>
## 54    <NA>                       <NA>
## 55    <NA>                       <NA>
## 56    <NA>                       <NA>
## 57    <NA>                       <NA>
## 58    <NA>                       <NA>
## 59    <NA>                       <NA>
## 60    <NA>                       <NA>
## 61    <NA>                       <NA>
## 62    <NA>                       <NA>
## 63    <NA>                       <NA>
## 64    DWVa                 troponin C
## 65   ARV_2  muscle LIM protein 1-like
## 66    <NA>                       <NA>
## 67    <NA>                       <NA>
## 68    <NA>                       <NA>
## 69    <NA>                       <NA>
## 70   ARV_2 troponin I-like isoform X1
## 71    <NA>                       <NA>
## 72    <NA>                       <NA>
## 73    <NA>                       <NA>
## 74    <NA>                       <NA>
## 75    <NA>                       <NA>
## 76    <NA>                       <NA>
## 77    <NA>                       <NA>
## 78    <NA>                       <NA>
## 79    <NA>                       <NA>
## 80    <NA>                       <NA>
## 81    <NA>                       <NA>
## 82    <NA>                       <NA>
## 83    <NA>                       <NA>
## 84    <NA>                       <NA>
## 85    <NA>                       <NA>
## 86    <NA>                       <NA>
sum(!is.na(f$virus.x))
## [1] 3
# only 3 genes of magenta module appear in the former hubgene. analysis
# so to what module these 53-hubgenes belong to?

e <- left_join(hub_old, all.genes.66, by = "genes")
e
## # A tibble: 53 x 9
##    genes virus.x `Protein Name` module IntraModCon MMmagenta GS.DWVa  GS.VDV2
##    <chr> <chr>   <chr>          <fct>        <dbl>     <dbl>   <dbl>    <dbl>
##  1 1112… DWVa    sarcoplasmic … purple        16.3     0.331  -0.420 -0.115  
##  2 1112… DWVa    LOW QUALITY P… purple        16.5     0.372  -0.390 -0.136  
##  3 1112… DWVa    myosin heavy … purple        15.7     0.299  -0.323 -0.222  
##  4 1112… DWVa    LOW QUALITY P… purple        15.8     0.241  -0.416 -0.184  
##  5 1112… DWVa    paramyosin-li… purple        15.2     0.394  -0.471 -0.0357 
##  6 1112… DWVa    glutamate rec… purple        14.2     0.356  -0.347 -0.141  
##  7 1112… DWVa    protein phosp… purple        13.3     0.398  -0.376 -0.0163 
##  8 1112… DWVa    LOW QUALITY P… purple        13.9     0.389  -0.454 -0.183  
##  9 1112… DWVa    glutamate rec… purple        14.0     0.196  -0.440 -0.312  
## 10 1112… DWVa    solute carrie… purple        11.1     0.442  -0.347 -0.00790
## # … with 43 more rows, and 1 more variable: GS.ARV_2 <dbl>
# in the 66 libs, most of them belong to the purple module 

all.genes.57 <- data.frame(
  module = moduleColors_57,
  geneTraitSignificance_57,
  geneModuleMembership_57,
  IntraModCon = Alldegrees1_57$kWithin) %>%
  dplyr::select(c(module, IntraModCon, MMmagenta, GS.DWVa, GS.VDV2, GS.ARV_2)) %>%
  rownames_to_column("genes")

g <- left_join(hub_old, all.genes.57, by = "genes")
g
## # A tibble: 53 x 9
##    genes virus.x `Protein Name` module IntraModCon MMmagenta GS.DWVa GS.VDV2
##    <chr> <chr>   <chr>          <fct>        <dbl>     <dbl>   <dbl>   <dbl>
##  1 1112… DWVa    sarcoplasmic … salmon       15.8   -0.0494   -0.303 -0.190 
##  2 1112… DWVa    LOW QUALITY P… salmon       13.6   -0.00292  -0.281 -0.151 
##  3 1112… DWVa    myosin heavy … salmon       15.1   -0.104    -0.203 -0.261 
##  4 1112… DWVa    LOW QUALITY P… salmon       15.3   -0.0104   -0.343 -0.236 
##  5 1112… DWVa    paramyosin-li… salmon       12.9   -0.108    -0.367 -0.136 
##  6 1112… DWVa    glutamate rec… salmon       13.8   -0.107    -0.223 -0.203 
##  7 1112… DWVa    protein phosp… salmon       13.0   -0.00668  -0.272 -0.0683
##  8 1112… DWVa    LOW QUALITY P… purple       14.4   -0.0892   -0.349 -0.205 
##  9 1112… DWVa    glutamate rec… salmon       11.0   -0.0396   -0.353 -0.341 
## 10 1112… DWVa    solute carrie… salmon        9.64   0.145    -0.285  0.0203
## # … with 43 more rows, and 1 more variable: GS.ARV_2 <dbl>
# in the 57 libs, most belong to the salmon module.

# and what about the silenced genes? to which module they belong to?
# prepare a table describing each gene number, short-name and full annotation, of the silenced genes:
genes <- as.factor(c("111250594", "111244103","111244832", "111248360", "111245345", "111248674", "111251059", "111245371", "111244631", "111252566", "111249664"))
annot <- as.factor(c("Sarcalumenin", "glycerol-3-phosphate dehydrogenase", "Calmodulin", "Cuticle-protein8","Cuticle-protein-14", "Glutamate-receptor-3", "Glutamate-gated-chloride-channel-subunit-beta", "Organic-cation-transporter-protein", "Twitchin", "Annulin", "Defense-protein-Hdd11"))
ShortName <- as.factor(c("Sar", "Gly","clmd", "CuP8", "CuP14", "Glut", "Chl", "Trans", "Twitch", "Anl", "HDD"))
silenced.genes <- data.frame(genes, ShortName, annot)

# to what module the silenced genes belong to?
silenced_overlap.66 <- left_join(silenced.genes, all.genes.66, by = "genes")

# of the 11 genes, 8 belong to purple module, 2 to pink and 1 to green. 
# all have negative interaction with DWVa. 

check correaltion between the overlapping genes connectivity of the two analyses:

the intramodular connectivity of the genes in magenta module is correlated to that of its matching module (black), in the 57 libraries, but not to the purple module.

check correaltion between the overlapping genes geneTraitSignificance of the two analyses, for DWVa virus

check correaltion between the overlapping genes geneTraitSignificance of the two analyses, for VDV2 virus

for both DWVa and VDV2 there is high correlation between the matching modules