This file contains a comparison between our two arrest CNNs (Baseline & Minority-Sampler) and the CNNs produced by Jim (MNV-2). I compare our model performance to that of the top 3 models from Jims experiment, which are labeled as such. The outline is as follows;
p_hat_cnn coming from the 5 models in this analysis:Baseline CNN: this is the CNN trained by Logan and Celia and has a standard ResNet-50 structure
Minority-Class-Sampler: this is the latest CNN in which I implemented our data-sampler to correct the imbalance of our training data. This also has a ResNet-50 structure
Top, Second, Third: these are the MNV-2 style networks Jim trained over different experiments, taking the top three performing models based on AUC
As a reminder (these are the same definitions as in previous itterations), here is a list of the regression terms. I split them into definitions for our models and our features:
Model Definitions
Demographic LM: This includes sex and age_arrest to predict our arrest-outcome
Charge Feature LM : This includes felony_flag, gun_crime_flag, drug_crime_flag, violent_crime_flag, property_crime_flag, arrest_year
XgBoost risk: As the name would suggest, this is our XgBoost risk predictor using time-varying arrest history features
Feature Definitions
MTurk Features: These are our high-detail (minimum of 6 workers per image) MTurk features together with their median
Kitchen Sink: The final row of the table includes all previous rows, it is our fully stacked model with all covariates.
Below I plot 5 different distributions of p_hat_cnn for our different CNN output.
I repeat table 01 configuration 01 for our different CNNs. Each column is using the p_hat_cnn from the corresponding CNN. Thus, the column entitled MNV2-Top repeats the regressions with the predictions from the top performing MNV-2 CNN. The most RHS column entitled Ensamble Model makes use of all 5 models.
Note For definitions of our models and features see the definition section in the beginning
| Table 01 - Version 01 - Model Comparison | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fit measured in adjusted R squared and AUC | ||||||||||||
| Model Configuration | ResNet-50 Baseline | ResNet-50 Minority Sampler | MNV-2 Top | MNV-2 Second | MNV-2 Third | Ensable Model (ResNet + MNV2 Versions) | ||||||
| Adjusted R Squared | ROC AUC | Adjusted R Squared | ROC AUC | Adjusted R Squared | ROC AUC | Adjusted R Squared | ROC AUC | Adjusted R Squared | ROC AUC | Adjusted R Squared | ROC AUC | |
| Single Variable Model | ||||||||||||
| Demographic LM | 0.0101 | 0.5555 | 0.0101 | 0.5555 | 0.0101 | 0.5555 | 0.0101 | 0.5555 | 0.0101 | 0.5555 | 0.0101 | 0.5555 |
| Lower 95% C.I. | 0.0071 | 0.5415 | 0.0072 | 0.5415 | 0.0072 | 0.5415 | 0.0071 | 0.5415 | 0.0071 | 0.5415 | 0.0072 | 0.5415 |
| Upper 95% C.I. | 0.0136 | 0.5695 | 0.0137 | 0.5695 | 0.0136 | 0.5695 | 0.0138 | 0.5695 | 0.0136 | 0.5695 | 0.0135 | 0.5695 |
| Charge Feature LM | 0.0907 | 0.6909 | 0.0907 | 0.6909 | 0.0907 | 0.6909 | 0.0907 | 0.6909 | 0.0907 | 0.6909 | 0.0907 | 0.6909 |
| 0.0800 | 0.6776 | 0.0799 | 0.6776 | 0.0803 | 0.6776 | 0.0802 | 0.6776 | 0.0800 | 0.6776 | 0.0796 | 0.6776 | |
| 0.1007 | 0.7042 | 0.1015 | 0.7042 | 0.1020 | 0.7042 | 0.1019 | 0.7042 | 0.1016 | 0.7042 | 0.1012 | 0.7042 | |
| XgBoost Risk | 0.0334 | 0.6100 | 0.0334 | 0.6100 | 0.0334 | 0.6100 | 0.0334 | 0.6100 | 0.0334 | 0.6100 | 0.0334 | 0.6100 |
| 0.0270 | 0.5963 | 0.0264 | 0.5963 | 0.0273 | 0.5963 | 0.0270 | 0.5963 | 0.0268 | 0.5963 | 0.0272 | 0.5963 | |
| 0.0409 | 0.6236 | 0.0405 | 0.6236 | 0.0410 | 0.6236 | 0.0410 | 0.6236 | 0.0411 | 0.6236 | 0.0405 | 0.6236 | |
| MTurk Features (Mean + Median) | 0.0002 | 0.5344 | 0.0002 | 0.5344 | 0.0002 | 0.5344 | 0.0002 | 0.5344 | 0.0002 | 0.5344 | 0.0002 | 0.5344 |
| 0.0007 | 0.5201 | 0.0007 | 0.5201 | 0.0006 | 0.5201 | 0.0006 | 0.5201 | 0.0007 | 0.5201 | 0.0006 | 0.5201 | |
| 0.0050 | 0.5487 | 0.0050 | 0.5487 | 0.0051 | 0.5487 | 0.0053 | 0.5487 | 0.0050 | 0.5487 | 0.0049 | 0.5487 | |
| P_hat_cnn | 0.0327 | 0.6226 | 0.0333 | 0.6222 | 0.0212 | 0.6066 | 0.0226 | 0.6046 | 0.0190 | 0.5993 | 0.0424 | 0.6391 |
| 0.0266 | 0.6091 | 0.0277 | 0.6086 | 0.0163 | 0.5927 | 0.0175 | 0.5906 | 0.0145 | 0.5852 | 0.0364 | 0.6256 | |
| 0.0396 | 0.6361 | 0.0398 | 0.6358 | 0.0270 | 0.6205 | 0.0279 | 0.6186 | 0.0239 | 0.6133 | 0.0497 | 0.6525 | |
| Combined Variable Model | ||||||||||||
| Demographics + Charge Feature | 0.0972 | 0.7010 | 0.0972 | 0.7010 | 0.0972 | 0.7010 | 0.0972 | 0.7010 | 0.0972 | 0.7010 | 0.0972 | 0.7010 |
| 0.0861 | 0.6880 | 0.0856 | 0.6880 | 0.0864 | 0.6880 | 0.0865 | 0.6880 | 0.0868 | 0.6880 | 0.0860 | 0.6880 | |
| 0.1088 | 0.7140 | 0.1079 | 0.7140 | 0.1088 | 0.7140 | 0.1078 | 0.7140 | 0.1084 | 0.7140 | 0.1089 | 0.7140 | |
| Demographics + Charge Feature + Risk | 0.1124 | 0.7177 | 0.1124 | 0.7177 | 0.1124 | 0.7177 | 0.1124 | 0.7177 | 0.1124 | 0.7177 | 0.1124 | 0.7177 |
| 0.1012 | 0.7050 | 0.1009 | 0.7050 | 0.1015 | 0.7050 | 0.1010 | 0.7050 | 0.1007 | 0.7050 | 0.1015 | 0.7050 | |
| 0.1260 | 0.7304 | 0.1249 | 0.7304 | 0.1240 | 0.7304 | 0.1244 | 0.7304 | 0.1239 | 0.7304 | 0.1251 | 0.7304 | |
| Demographics + Charge Feature + Risk + MTurk (Mean + Median) | 0.1125 | 0.7195 | 0.1125 | 0.7195 | 0.1125 | 0.7195 | 0.1125 | 0.7195 | 0.1125 | 0.7195 | 0.1125 | 0.7195 |
| 0.1028 | 0.7068 | 0.1032 | 0.7068 | 0.1039 | 0.7068 | 0.1039 | 0.7068 | 0.1024 | 0.7068 | 0.1035 | 0.7068 | |
| 0.1269 | 0.7322 | 0.1265 | 0.7322 | 0.1271 | 0.7322 | 0.1272 | 0.7322 | 0.1271 | 0.7322 | 0.1265 | 0.7322 | |
| Demographics + Charge Feature + Risk + CNN | 0.1217 | 0.7286 | 0.1231 | 0.7292 | 0.1191 | 0.7236 | 0.1187 | 0.7251 | 0.1161 | 0.7219 | 0.1259 | 0.7324 |
| 0.1103 | 0.7163 | 0.1119 | 0.7169 | 0.1076 | 0.7110 | 0.1076 | 0.7126 | 0.1042 | 0.7093 | 0.1153 | 0.7202 | |
| 0.1339 | 0.7410 | 0.1351 | 0.7415 | 0.1314 | 0.7362 | 0.1304 | 0.7376 | 0.1274 | 0.7344 | 0.1386 | 0.7447 | |
| Kitchen Sink (all RHS variables included) | 0.1221 | 0.7308 | 0.1230 | 0.7311 | 0.1194 | 0.7257 | 0.1188 | 0.7270 | 0.1166 | 0.7242 | 0.1260 | 0.7344 |
| 0.1128 | 0.7185 | 0.1143 | 0.7188 | 0.1095 | 0.7131 | 0.1097 | 0.7145 | 0.1079 | 0.7116 | 0.1170 | 0.7222 | |
| 0.1369 | 0.7431 | 0.1377 | 0.7434 | 0.1331 | 0.7383 | 0.1339 | 0.7394 | 0.1307 | 0.7367 | 0.1412 | 0.7467 | |