Fox River before and after cleaning initial examination

Are the values of conductance before and after significantly different??

Load Tidyverse Import data set view data set

library(tidyverse)
library(readxl)
foxdamp <- read_excel("foxdamp.xlsx", col_types = c("numeric", 
    "numeric"))
View(foxdamp)
print(foxdamp)

spcon1 values before cleaning spcon2 values after cleaning

Summary of data Boxplot to view data

summary(foxdamp)
     spcon1          spcon2     
 Min.   :0.957   Min.   :1.019  
 1st Qu.:1.099   1st Qu.:1.136  
 Median :1.143   Median :1.190  
 Mean   :1.131   Mean   :1.191  
 3rd Qu.:1.185   3rd Qu.:1.269  
 Max.   :1.259   Max.   :1.334  
boxplot(foxdamp)

In viewing the data in the summary and on a boxplot, the median appears to be larger, therefore the cleanings seem to increase the specific conductance readings.

Running some basic tests to make sure the data are normal as well meet other assumptions for a t-test like equal variance using an F-test

Shapiro Wilk test normal distribution

shapiro.test(foxdamp$spcon1)

    Shapiro-Wilk normality test

data:  foxdamp$spcon1
W = 0.95367, p-value = 0.7699
shapiro.test(foxdamp$spcon2)

    Shapiro-Wilk normality test

data:  foxdamp$spcon2
W = 0.98188, p-value = 0.9605

Passes pvalue above .05, Data are normal

Test of Variance

var.test(foxdamp$spcon1 , foxdamp$spcon2)

    F test to compare two variances

data:  foxdamp$spcon1 and foxdamp$spcon2
F = 0.83445, num df = 5, denom df = 5, p-value = 0.8474
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.1167653 5.9632930
sample estimates:
ratio of variances 
         0.8344493 

The p-value is p = 0.8 which is greater than the significance level 0.05. In conclusion, there is no significant difference between the two variances.

t.test(foxdamp$spcon1 , foxdamp$spcon2)

    Welch Two Sample t-test

data:  foxdamp$spcon1 and foxdamp$spcon2
t = -0.95588, df = 9.9192, p-value = 0.3619
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.20013869  0.08006395
sample estimates:
mean of x mean of y 
 1.130872  1.190909 

In further research, I found that the Wech t-test, a non- parametric t-test would be a better for our small data sets, therefore we can bypass the assumptions related to the students t-test

My conclusion from the Fox River @ Waukesha would indicate that the the p-value (p = 0.3) is greater than the significance level (0.05).

Therefore, is no significant difference in performance of the ctd between cleanings.

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIA0KDQoNCg0KDQpGb3ggUml2ZXIgYmVmb3JlIGFuZCBhZnRlciBjbGVhbmluZyBpbml0aWFsIGV4YW1pbmF0aW9uIA0KDQpBcmUgdGhlIHZhbHVlcyBvZiBjb25kdWN0YW5jZSBiZWZvcmUgYW5kIGFmdGVyIHNpZ25pZmljYW50bHkgZGlmZmVyZW50Pz8NCg0KDQpMb2FkIFRpZHl2ZXJzZSANCkltcG9ydCBkYXRhIHNldA0KdmlldyBkYXRhIHNldA0KDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KHJlYWR4bCkNCmZveGRhbXAgPC0gcmVhZF9leGNlbCgiZm94ZGFtcC54bHN4IiwgY29sX3R5cGVzID0gYygibnVtZXJpYyIsIA0KICAgICJudW1lcmljIikpDQpWaWV3KGZveGRhbXApDQpgYGANCmBgYHtyfQ0KcHJpbnQoZm94ZGFtcCkNCmBgYA0Kc3Bjb24xIHZhbHVlcyBiZWZvcmUgY2xlYW5pbmcNCnNwY29uMiB2YWx1ZXMgYWZ0ZXIgY2xlYW5pbmcNCg0KU3VtbWFyeSBvZiBkYXRhDQpCb3hwbG90IHRvIHZpZXcgZGF0YQ0KYGBge3J9DQpzdW1tYXJ5KGZveGRhbXApDQoNCmBgYA0KYGBge3J9DQpib3hwbG90KGZveGRhbXApDQpgYGANCkluIHZpZXdpbmcgdGhlIGRhdGEgaW4gdGhlIHN1bW1hcnkgYW5kIG9uIGEgYm94cGxvdCwgdGhlIG1lZGlhbiBhcHBlYXJzIHRvIGJlIGxhcmdlciwgdGhlcmVmb3JlIHRoZSBjbGVhbmluZ3Mgc2VlbSB0byBpbmNyZWFzZSB0aGUgc3BlY2lmaWMgY29uZHVjdGFuY2UgcmVhZGluZ3MuDQoNCg0KUnVubmluZyBzb21lIGJhc2ljIHRlc3RzIHRvIG1ha2Ugc3VyZSB0aGUgZGF0YSBhcmUgbm9ybWFsIGFzIHdlbGwgbWVldCBvdGhlcg0KYXNzdW1wdGlvbnMgZm9yIGEgdC10ZXN0IGxpa2UgZXF1YWwgdmFyaWFuY2UgdXNpbmcgYW4gRi10ZXN0DQoNCg0KU2hhcGlybyBXaWxrIHRlc3Qgbm9ybWFsIGRpc3RyaWJ1dGlvbg0KDQpgYGB7cn0NCnNoYXBpcm8udGVzdChmb3hkYW1wJHNwY29uMSkNCnNoYXBpcm8udGVzdChmb3hkYW1wJHNwY29uMikNCmBgYA0KUGFzc2VzIHB2YWx1ZSBhYm92ZSAuMDUsIERhdGEgYXJlIG5vcm1hbA0KDQpUZXN0IG9mIFZhcmlhbmNlDQoNCmBgYHtyfQ0KdmFyLnRlc3QoZm94ZGFtcCRzcGNvbjEgLCBmb3hkYW1wJHNwY29uMikNCmBgYA0KVGhlIHAtdmFsdWUgaXMgcCA9IDAuOCB3aGljaCBpcyBncmVhdGVyIHRoYW4gdGhlIHNpZ25pZmljYW5jZSBsZXZlbCAwLjA1LiBJbiBjb25jbHVzaW9uLCB0aGVyZSBpcyBubyBzaWduaWZpY2FudCBkaWZmZXJlbmNlIGJldHdlZW4gdGhlIHR3byB2YXJpYW5jZXMuDQoNCg0KYGBge3J9DQp0LnRlc3QoZm94ZGFtcCRzcGNvbjEgLCBmb3hkYW1wJHNwY29uMikNCmBgYA0KSW4gZnVydGhlciByZXNlYXJjaCwgSSBmb3VuZCB0aGF0IHRoZSBXZWNoIHQtdGVzdCwgYSBub24tIHBhcmFtZXRyaWMgdC10ZXN0DQp3b3VsZCBiZSBhIGJldHRlciBmb3Igb3VyIHNtYWxsIGRhdGEgc2V0cywgdGhlcmVmb3JlIHdlIGNhbiBieXBhc3MgdGhlIGFzc3VtcHRpb25zIHJlbGF0ZWQgdG8gdGhlIHN0dWRlbnRzIHQtdGVzdA0KDQoNCk15IGNvbmNsdXNpb24gZnJvbSB0aGUgRm94IFJpdmVyIEAgV2F1a2VzaGEgd291bGQgaW5kaWNhdGUgdGhhdCB0aGUgDQp0aGUgcC12YWx1ZSAocCA9IDAuMykgaXMgZ3JlYXRlciB0aGFuIHRoZSBzaWduaWZpY2FuY2UgbGV2ZWwgKDAuMDUpLiANCg0KVGhlcmVmb3JlLCBpcyBubyBzaWduaWZpY2FudCBkaWZmZXJlbmNlIGluIHBlcmZvcm1hbmNlIG9mIHRoZSBjdGQgYmV0d2VlbiBjbGVhbmluZ3MuDQo=