This script is the main analysis for the of the Onset-Neighbourhood Density Analyses.

require(knitr)
## Loading required package: knitr
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.4     ✓ dplyr   1.0.2
## ✓ tidyr   1.1.2     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(brms)
## Loading required package: Rcpp
## Loading 'brms' package (version 2.13.5). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
## 
## Attaching package: 'brms'
## The following object is masked from 'package:stats':
## 
##     ar
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## 
## Attaching package: 'lme4'
## The following object is masked from 'package:brms':
## 
##     ngrps
library(mcmcplots)
## Loading required package: coda
library(tidybayes)
## 
## Attaching package: 'tidybayes'
## The following objects are masked from 'package:brms':
## 
##     dstudent_t, pstudent_t, qstudent_t, rstudent_t
library(ggthemes)
theme_set(theme_minimal())

Open eye-tracking data: There are three separate datasets – one for RTs, one for Proportions and one for pre-onset proportion of looks to target.

LT_30mo <- read_csv("Data_Processing/LT_30mo.csv") 
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   Target = col_character(),
##   ParticipantName = col_character(),
##   MediaName = col_character(),
##   AOI = col_character(),
##   Blind_ID = col_character()
## )
## See spec(...) for full column specifications.
nrow(data.frame(unique(LT_30mo $ParticipantName))) 
## [1] 100
RT_30mo  <- read_csv("Data_Processing/RT_30mo.csv") 
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   Target = col_character(),
##   ParticipantName = col_character(),
##   MediaName = col_character(),
##   FirstAOI = col_character(),
##   Blind_ID = col_character(),
##   TargetSide = col_character()
## )
## See spec(...) for full column specifications.
nrow(data.frame(unique(RT_30mo $ParticipantName))) 
## [1] 100
Prior_looks <- read_csv("Data_Processing/Prior_looks.csv")
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   Target = col_character(),
##   ParticipantName = col_character(),
##   MediaName = col_character(),
##   AOI = col_character(),
##   Blind_ID = col_character()
## )
## See spec(...) for full column specifications.
LT_30mo %>%
  group_by(Target) %>%
  summarise(
    Freq = mean(COCA_Freq_2)
  )
## `summarise()` ungrouping output (override with `.groups` argument)

Get average looks to target in pre-onset window, for each word averaged across participants, and participant-specific averages.

Prop_by_target <- Prior_looks %>%
                    group_by(Target) %>%
                    dplyr::summarize(
                    TargetProp = mean(Prop)
                    )
## `summarise()` ungrouping output (override with `.groups` argument)
Prop_by_target_part <- Prior_looks%>%
                       group_by(ParticipantName, Target) %>%
                       dplyr::summarize(
                       PartTargetProp = mean(Prop)
                       )
## `summarise()` regrouping output by 'ParticipantName' (override with `.groups` argument)
RT_30mo <- merge(RT_30mo, Prop_by_target, by="Target")
RT_30mo <- merge(RT_30mo, Prop_by_target_part, by=c("ParticipantName", "Target"))

LT_30mo <- merge(LT_30mo, Prop_by_target, by="Target")
LT_30mo <- merge(LT_30mo, Prop_by_target_part, by=c("ParticipantName", "Target"))

Median Split for Subgroup Analyses

RT_30mo$VocabSplit <- ifelse(RT_30mo$VocabTotal < 544, yes=0, no =1)
RT_30mo$VocabSplit <- factor(RT_30mo$VocabSplit, labels = c("low", "high"))
LT_30mo$VocabSplit <- ifelse(LT_30mo$VocabTotal < 544, yes=0, no =1)
LT_30mo$VocabSplit <- factor(LT_30mo$VocabSplit,labels = c("low", "high"))

First, analyse looks to target in pre onset window

Prior_looks %>%
  group_by(Target) %>%
  summarise(
    Prop_mean = mean(Prop, na.rm=TRUE), 
    Prop_sd = sd(Prop, na.rm=TRUE),
  )
## `summarise()` ungrouping output (override with `.groups` argument)

Transform proportions to remove 0s and 1s for beta distribution. Divide variables by 100 (otherwise regression coefficients are all .00)

Prior_looks$Prop2 <- ((Prior_looks$Prop)*(Prior_looks$SamplesTotal-1) + 1/2)/Prior_looks$SamplesTotal
Prior_looks <- mutate(Prior_looks, 
Vocab.c100 = (Vocab.c - median(Vocab.c))/100,
Median_Initial.c100 = Median_Initial.c/100,
AoA.c100 = (Percent_75_Amer - mean(Percent_75_Amer))/100,
logfreq.c100 = logfreq.c/100,
TrialNumber.100 = TrialNumber/100) 

Beta Regression predicting average proportion of looks to target in the pre-onset window

mpo <- brm(Prop2 ~ 1 + (1 |ParticipantName) + (1 | Target),  family=Beta("logit", "log"), 
           data=Prior_looks, 
           chains=4, 
           iter=5000, 
           cores=8, 
           file="mpo", 
           save_all_pars=TRUE)
summary(mpo)
##  Family: beta 
##   Links: mu = logit; phi = identity 
## Formula: Prop2 ~ 1 + (1 | ParticipantName) + (1 | Target) 
##    Data: Prior_looks (Number of observations: 3534) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 100) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.13      0.02     0.08     0.17 1.00     3728     3234
## 
## ~Target (Number of levels: 18) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     0.44      0.09     0.31     0.65 1.00     2090     3789
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.29      0.11     0.08     0.51 1.00     1300     2283
## 
## Family Specific Parameters: 
##     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi     3.61      0.08     3.46     3.77 1.00    13695     7202
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

See if proportion of looks pre onset is predicted by substantive or methodological variables.

mpo_baseline <- brm(Prop2 ~ Median_Initial.c100 + Vocab.c100 + AoA.c100 + First_Instance + TrialNumber.100 + logfreq.c100 + 
                      (1 + Median_Initial.c100  + AoA.c100 + First_Instance + TrialNumber.100 + logfreq.c100  || ParticipantName) + 
                      (1 + First_Instance + Vocab.c100 + TrialNumber.100  || Target), 
                    family=Beta("logit", "log"),
                    data=Prior_looks,
                    chains=4, 
                    iter=5000,  
                    cores=8, 
                    file="mpo_baseline",
                    save_all_pars=TRUE)
summary(mpo_baseline)
##  Family: beta 
##   Links: mu = logit; phi = identity 
## Formula: Prop2 ~ Median_Initial.c100 + Vocab.c100 + AoA.c100 + First_Instance + TrialNumber.100 + logfreq.c100 + (1 + Median_Initial.c100 + AoA.c100 + First_Instance + TrialNumber.100 + logfreq.c100 || ParticipantName) + (1 + First_Instance + Vocab.c100 + TrialNumber.100 || Target) 
##    Data: Prior_looks (Number of observations: 3534) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 100) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.04      0.03     0.00     0.10 1.00     2611
## sd(Median_Initial.c100)     0.28      0.20     0.01     0.72 1.00     4332
## sd(AoA.c100)                2.41      1.02     0.30     4.25 1.00     2127
## sd(First_Instance)          0.08      0.05     0.01     0.17 1.00     2465
## sd(TrialNumber.100)         0.78      0.11     0.57     1.00 1.00     4215
## sd(logfreq.c100)           10.61      3.46     1.99    16.54 1.00     2072
##                         Tail_ESS
## sd(Intercept)               4008
## sd(Median_Initial.c100)     4760
## sd(AoA.c100)                2910
## sd(First_Instance)          4349
## sd(TrialNumber.100)         6004
## sd(logfreq.c100)            1917
## 
## ~Target (Number of levels: 18) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.42      0.11     0.26     0.67 1.00     4072     4451
## sd(First_Instance)      0.10      0.06     0.01     0.22 1.00     2932     5276
## sd(Vocab.c100)          0.08      0.02     0.04     0.13 1.00     3970     5606
## sd(TrialNumber.100)     0.81      0.30     0.23     1.45 1.00     2807     1504
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept               0.30      0.12     0.07     0.55 1.00     6009     6606
## Median_Initial.c100    -0.20      1.05    -2.31     1.87 1.00     6399     6658
## Vocab.c100              0.00      0.03    -0.05     0.06 1.00     9404     8034
## AoA.c100                0.61      3.91    -7.17     8.22 1.00     6837     6642
## First_Instance         -0.09      0.06    -0.20     0.02 1.00    13478     7541
## TrialNumber.100         0.21      0.31    -0.40     0.84 1.00    10026     8164
## logfreq.c100           -1.17     13.62   -27.89    26.06 1.00     6295     6126
## 
## Family Specific Parameters: 
##     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi     3.83      0.09     3.66     4.00 1.00     9704     8013
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
marginal_effects(mpo_baseline, "First_Instance")
## Warning: Method 'marginal_effects' is deprecated. Please use
## 'conditional_effects' instead.

mpo_1<- brm(Prop2 ~ Median_Initial.c100*Vocab.c100 + AoA.c100 + First_Instance + TrialNumber.100 + logfreq.c100 +
              (1 + Median_Initial.c100 + AoA.c100 + First_Instance + TrialNumber.100 + logfreq.c100 || ParticipantName) + 
              (1 + First_Instance + Vocab.c100 + TrialNumber.100 || Target), 
            family=Beta("logit", "log"), prior=prior(student_t(3,0,2), class=sd), 
            data=Prior_looks, chains=4, iter=5000, 
            file="mpo_1",
            cores=8, save_all_pars=TRUE)
summary(mpo_1)
##  Family: beta 
##   Links: mu = logit; phi = identity 
## Formula: Prop2 ~ Median_Initial.c100 * Vocab.c100 + AoA.c100 + First_Instance + TrialNumber.100 + logfreq.c100 + (1 + Median_Initial.c100 + AoA.c100 + First_Instance + TrialNumber.100 + logfreq.c100 || ParticipantName) + (1 + First_Instance + Vocab.c100 + TrialNumber.100 || Target) 
##    Data: Prior_looks (Number of observations: 3534) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 100) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.04      0.03     0.00     0.10 1.00     2721
## sd(Median_Initial.c100)     0.28      0.20     0.01     0.74 1.00     4568
## sd(AoA.c100)                2.35      1.01     0.29     4.18 1.00     2532
## sd(First_Instance)          0.08      0.04     0.01     0.17 1.00     2298
## sd(TrialNumber.100)         0.78      0.11     0.56     1.00 1.00     4090
## sd(logfreq.c100)           10.24      3.76     1.12    16.44 1.00     1845
##                         Tail_ESS
## sd(Intercept)               4590
## sd(Median_Initial.c100)     5449
## sd(AoA.c100)                2835
## sd(First_Instance)          4247
## sd(TrialNumber.100)         5865
## sd(logfreq.c100)            2057
## 
## ~Target (Number of levels: 18) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.42      0.11     0.26     0.67 1.00     5236     5472
## sd(First_Instance)      0.10      0.06     0.01     0.22 1.00     2998     5514
## sd(Vocab.c100)          0.08      0.03     0.04     0.14 1.00     4040     5117
## sd(TrialNumber.100)     0.81      0.29     0.27     1.45 1.00     3940     3569
## 
## Population-Level Effects: 
##                                Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept                          0.30      0.13     0.05     0.56 1.00
## Median_Initial.c100               -0.21      1.07    -2.39     1.87 1.00
## Vocab.c100                         0.00      0.03    -0.05     0.06 1.00
## AoA.c100                           0.66      3.99    -6.99     8.64 1.00
## First_Instance                    -0.09      0.06    -0.20     0.02 1.00
## TrialNumber.100                    0.22      0.32    -0.41     0.87 1.00
## logfreq.c100                      -1.15     13.50   -28.20    25.72 1.00
## Median_Initial.c100:Vocab.c100    -0.06      0.25    -0.56     0.43 1.00
##                                Bulk_ESS Tail_ESS
## Intercept                          5744     6144
## Median_Initial.c100                5755     6137
## Vocab.c100                         8135     7671
## AoA.c100                           6205     6269
## First_Instance                    13654     7911
## TrialNumber.100                    9534     7106
## logfreq.c100                       6145     6391
## Median_Initial.c100:Vocab.c100     7931     6149
## 
## Family Specific Parameters: 
##     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi     3.83      0.09     3.65     4.00 1.00     9815     7439
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
remove(mpo)
remove(mpo_baseline)
remove(mpo_1)

Analysis of RTs

Get number of trials per participant

## 
##  4  6  7  8  9 10 11 12 13 14 15 16 17 18 19 
##  1  3  3  5  6 18 17  6 10  9 11  5  1  2  3

Re-scale variables to make coefficients more interpretable

RT_30mo <- mutate(RT_30mo,
  Vocab.c100 = Vocab.c/100,
  logfreq.c100 = logfreq.c/100,
  Median_Initial.c100 = Median_Initial.c/100,
  log_Median_Initial.c = (log(Median_Initial) - mean(log(Median_Initial)))/100, 
  AoA.c100 = (Percent_75_Amer - mean(Percent_75_Amer))/100,
  Duration.c100 = (Duration-mean(Duration))/100,
  TrialNumber.c100 = (TrialNumber - median(TrialNumber))/100
  )

Summary statistics by words

RT_30mo %>%
  group_by(Target) %>%
  summarise(
    RT_mean = mean(RT, na.rm=TRUE), 
    RT_sd = sd(RT, na.rm=TRUE),
    count = n()
  )
## `summarise()` ungrouping output (override with `.groups` argument)

Baseline model – main effect of Initial density.

m0 <- brm(RT ~ Median_Initial.c100+ Vocab.c100  + First_Instance + PartTargetProp + TargetProp + logfreq.c100+ AoA.c100 + First_Instance + Duration.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp +  Duration.c100 + PartTargetProp + logfreq.c100 + AoA.c100|| ParticipantName) + (1 +  Vocab.c100 + First_Instance + PartTargetProp || Target), prior=prior(student_t(5,0,2), class=sd), family="shifted_lognormal", file="m0",
           data=RT_30mo, chains=4, iter=5000, cores=8, save_all_pars=TRUE)

m0<- add_criterion(m0, "loo")
tibble(m0_k = m0$criteria$loo$diagnostics$pareto_k) %>%
  ggplot(aes(x=m0_k)) +
  geom_vline(xintercept=.5, linetype=2) +
  stat_dots()

pp_check(m0)
## Using 10 posterior samples for ppc type 'dens_overlay' by default.

summary(m0)
##  Family: shifted_lognormal 
##   Links: mu = identity; sigma = identity; ndt = identity 
## Formula: RT ~ Median_Initial.c100 + Vocab.c100 + First_Instance + PartTargetProp + TargetProp + logfreq.c100 + AoA.c100 + First_Instance + Duration.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + Duration.c100 + PartTargetProp + logfreq.c100 + AoA.c100 || ParticipantName) + (1 + Vocab.c100 + First_Instance + PartTargetProp || Target) 
##    Data: RT_30mo (Number of observations: 1187) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 100) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.11      0.06     0.01     0.21 1.00     1180
## sd(Median_Initial.c100)     1.00      0.31     0.30     1.58 1.00     2440
## sd(First_Instance)          0.10      0.05     0.01     0.20 1.00     2697
## sd(TargetProp)              0.14      0.09     0.01     0.34 1.01     1438
## sd(Duration.c100)           0.04      0.03     0.00     0.09 1.00     2771
## sd(PartTargetProp)          0.23      0.11     0.02     0.43 1.01     1073
## sd(logfreq.c100)            2.20      1.94     0.08     7.31 1.00     5828
## sd(AoA.c100)                1.70      1.03     0.08     3.80 1.00     2660
##                         Tail_ESS
## sd(Intercept)               2622
## sd(Median_Initial.c100)     3015
## sd(First_Instance)          5503
## sd(TargetProp)              3105
## sd(Duration.c100)           5233
## sd(PartTargetProp)          2802
## sd(logfreq.c100)            5378
## sd(AoA.c100)                4876
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.06      0.04     0.00     0.17 1.00     3112     5379
## sd(Vocab.c100)         0.03      0.02     0.00     0.08 1.00     4149     5611
## sd(First_Instance)     0.09      0.05     0.01     0.20 1.00     3025     5040
## sd(PartTargetProp)     0.14      0.09     0.01     0.33 1.00     3576     5051
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept               6.30      0.23     5.86     6.75 1.00    10622     6919
## Median_Initial.c100     0.51      0.36    -0.20     1.23 1.00     9763     7139
## Vocab.c100             -0.08      0.03    -0.13    -0.03 1.00    11377     8228
## First_Instance         -0.01      0.05    -0.10     0.08 1.00    13340     8154
## PartTargetProp         -0.20      0.15    -0.49     0.09 1.00    15835     7787
## TargetProp             -0.87      0.43    -1.75    -0.04 1.00    10817     7231
## logfreq.c100            3.55      4.22    -4.76    12.08 1.00    10421     7139
## AoA.c100                1.36      1.43    -1.36     4.29 1.00     9004     6391
## Duration.c100           0.01      0.03    -0.06     0.07 1.00     8412     6369
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.59      0.03     0.54     0.64 1.00     7588     6619
## ndt     142.99      9.98   121.41   160.37 1.00    10694     7208
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(m0, "Median_Initial.c100  > 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... > 0     0.51      0.36    -0.08      1.1      12.61
##   Post.Prob Star
## 1      0.93     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
RT_30mo%>%
  mutate(
    m0_k = m0$criteria$loo$diagnostics$pareto_k
  ) %>%
  filter(m0_k >= .65)
m0b <- RT_30mo%>%
  mutate(
    m0_k = m0$criteria$loo$diagnostics$pareto_k
  ) %>%
  filter(m0_k < .65) %>%
  brm(RT ~ Median_Initial.c100+Vocab.c100 + First_Instance + logfreq.c100  + First_Instance + TargetProp +  PartTargetProp +  Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + PartTargetProp +   Duration.c100 + logfreq.c100 + AoA.c100|| ParticipantName) + (1 +  Vocab.c100 + First_Instance + PartTargetProp  || Target), family="shifted_lognormal", file="m0b", data=., prior=prior(student_t(5,0,2), class=sd), chains=4, iter=5000, cores=8, save_all_pars=TRUE)

Add Interaction

m1 <- brm(RT ~ Median_Initial.c100*Vocab.c100 + First_Instance + logfreq.c100  + First_Instance + TargetProp +  PartTargetProp + AoA.c100 + Duration.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + + Duration.c100 + PartTargetProp + logfreq.c100 + AoA.c100|| ParticipantName) + (1 +  Vocab.c100 + First_Instance + PartTargetProp || Target), family="shifted_lognormal", file="m1", data=RT_30mo, prior=prior(student_t(5,0,2), class=sd), chains=4, iter=5000, cores=8, save_all_pars=TRUE)

m1 <- add_criterion(m1, "loo")
## Warning: Found 2 observations with a pareto_k > 0.7 in model 'm1'. It is
## recommended to set 'moment_match = TRUE' in order to perform moment matching for
## problematic observations.
## Automatically saving the model object in 'm1.rds'
summary(m1)
##  Family: shifted_lognormal 
##   Links: mu = identity; sigma = identity; ndt = identity 
## Formula: RT ~ Median_Initial.c100 * Vocab.c100 + First_Instance + logfreq.c100 + First_Instance + TargetProp + PartTargetProp + AoA.c100 + Duration.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + +Duration.c100 + PartTargetProp + logfreq.c100 + AoA.c100 || ParticipantName) + (1 + Vocab.c100 + First_Instance + PartTargetProp || Target) 
##    Data: RT_30mo (Number of observations: 1187) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 100) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.11      0.06     0.01     0.21 1.00      951
## sd(Median_Initial.c100)     0.98      0.32     0.25     1.57 1.00     2393
## sd(First_Instance)          0.09      0.05     0.01     0.20 1.00     2276
## sd(TargetProp)              0.14      0.09     0.01     0.34 1.00     1447
## sd(Duration.c100)           0.04      0.03     0.00     0.09 1.00     2949
## sd(PartTargetProp)          0.23      0.11     0.02     0.43 1.00      923
## sd(logfreq.c100)            2.18      1.93     0.07     7.52 1.00     6242
## sd(AoA.c100)                1.76      1.03     0.10     3.84 1.00     2719
##                         Tail_ESS
## sd(Intercept)               2948
## sd(Median_Initial.c100)     2019
## sd(First_Instance)          4630
## sd(TargetProp)              2753
## sd(Duration.c100)           4495
## sd(PartTargetProp)          2382
## sd(logfreq.c100)            6247
## sd(AoA.c100)                3947
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.06      0.05     0.00     0.17 1.00     2829     5557
## sd(Vocab.c100)         0.03      0.02     0.00     0.07 1.00     5364     6073
## sd(First_Instance)     0.09      0.05     0.01     0.21 1.00     3101     4849
## sd(PartTargetProp)     0.14      0.09     0.01     0.33 1.00     2623     3880
## 
## Population-Level Effects: 
##                                Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept                          6.30      0.24     5.84     6.78 1.00
## Median_Initial.c100                0.58      0.37    -0.16     1.30 1.00
## Vocab.c100                        -0.09      0.03    -0.14    -0.03 1.00
## First_Instance                    -0.01      0.05    -0.10     0.08 1.00
## logfreq.c100                       3.58      4.20    -4.57    12.05 1.00
## TargetProp                        -0.86      0.45    -1.79     0.01 1.00
## PartTargetProp                    -0.20      0.15    -0.50     0.09 1.00
## AoA.c100                           1.37      1.45    -1.37     4.41 1.00
## Duration.c100                      0.01      0.03    -0.07     0.07 1.00
## Median_Initial.c100:Vocab.c100     0.36      0.21    -0.04     0.77 1.00
##                                Bulk_ESS Tail_ESS
## Intercept                          9976     6977
## Median_Initial.c100                8824     7508
## Vocab.c100                         9783     7840
## First_Instance                    12866     8066
## logfreq.c100                      10249     7203
## TargetProp                         9456     6663
## PartTargetProp                    13417     7902
## AoA.c100                           8173     5759
## Duration.c100                      6918     5437
## Median_Initial.c100:Vocab.c100    13486     7536
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.59      0.03     0.54     0.65 1.00     8797     7315
## ndt     143.64     10.09   121.86   161.43 1.00    10783     6933
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(m1, "Median_Initial.c100:Vocab.c100 > 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... > 0     0.36      0.21     0.02      0.7      25.39
##   Post.Prob Star
## 1      0.96    *
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
hypothesis(m1, "Median_Initial.c100 > 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... > 0     0.58      0.37    -0.02     1.18      16.67
##   Post.Prob Star
## 1      0.94     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
tibble(m1_k = m1$criteria$loo$diagnostics$pareto_k) %>%
  ggplot(aes(x=m1_k)) +
  geom_vline(xintercept=.5, linetype=2) +
  stat_dots()

1 observations had pareto ks above .7.

RT_30mo%>%
  mutate(
    m1_k = m1$criteria$loo$diagnostics$pareto_k
  ) %>%
  filter(m1_k >= .69)
m1b <- RT_30mo%>%
  mutate(
    m1_k = m1$criteria$loo$diagnostics$pareto_k
  ) %>%
  filter(m1_k < .69) %>%
  brm(RT ~ Median_Initial.c100*Vocab.c100 + First_Instance + logfreq.c100  + First_Instance + TargetProp +  PartTargetProp +  Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + PartTargetProp +   Duration.c100 + logfreq.c100 + AoA.c100|| ParticipantName) + (1 +  Vocab.c100 + First_Instance + PartTargetProp  || Target), family="shifted_lognormal", file="m1b", data=., prior=prior(student_t(5,0,2), class=sd), chains=4, iter=5000, cores=8, save_all_pars=TRUE)
summary(m1b)
## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
## careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.
##  Family: shifted_lognormal 
##   Links: mu = identity; sigma = identity; ndt = identity 
## Formula: RT ~ Median_Initial.c100 * Vocab.c100 + First_Instance + logfreq.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + logfreq.c100 + AoA.c100 || ParticipantName) + (1 + Vocab.c100 + First_Instance + PartTargetProp || Target) 
##    Data: . (Number of observations: 1185) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 100) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.11      0.06     0.01     0.22 1.04      127
## sd(Median_Initial.c100)     1.42      0.89     0.31     3.47 1.53        7
## sd(First_Instance)          0.17      0.15     0.01     0.54 1.50        7
## sd(TargetProp)              0.16      0.10     0.01     0.38 1.07       45
## sd(PartTargetProp)          0.34      0.25     0.02     0.97 1.51        7
## sd(Duration.c100)           0.09      0.09     0.00     0.32 1.52        7
## sd(logfreq.c100)            2.23      1.96     0.11     7.45 1.01      594
## sd(AoA.c100)                4.25      4.41     0.13    14.30 1.53        7
##                         Tail_ESS
## sd(Intercept)                718
## sd(Median_Initial.c100)       27
## sd(First_Instance)            29
## sd(TargetProp)               383
## sd(PartTargetProp)            22
## sd(Duration.c100)             23
## sd(logfreq.c100)             751
## sd(AoA.c100)                  33
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.09      0.08     0.00     0.35 1.10       28       22
## sd(Vocab.c100)         0.03      0.03     0.00     0.10 1.04      123       95
## sd(First_Instance)     0.14      0.13     0.01     0.49 1.27       12       31
## sd(PartTargetProp)     0.21      0.16     0.01     0.64 1.29       11       31
## 
## Population-Level Effects: 
##                                Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept                          6.25      0.34     5.46     6.86 1.11
## Median_Initial.c100                0.56      0.62    -0.91     1.98 1.15
## Vocab.c100                        -0.10      0.04    -0.21    -0.04 1.23
## First_Instance                    -0.04      0.09    -0.30     0.09 1.21
## logfreq.c100                       3.80      5.79    -7.82    16.56 1.10
## TargetProp                        -0.76      0.63    -1.85     0.81 1.09
## PartTargetProp                    -0.40      0.42    -1.50     0.07 1.44
## Duration.c100                      0.01      0.04    -0.08     0.11 1.06
## AoA.c100                           1.28      1.92    -2.41     5.38 1.07
## Median_Initial.c100:Vocab.c100     0.37      0.29    -0.17     1.04 1.11
##                                Bulk_ESS Tail_ESS
## Intercept                           172       48
## Median_Initial.c100                  68       37
## Vocab.c100                           13       25
## First_Instance                       14       29
## logfreq.c100                        180       70
## TargetProp                          109       34
## PartTargetProp                        8       26
## Duration.c100                       153       67
## AoA.c100                            131       95
## Median_Initial.c100:Vocab.c100       84       39
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.81      0.38     0.54     1.52 1.53        7       35
## ndt     158.78     26.33   125.21   202.00 1.52        7    10000
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(m1b, "Median_Initial.c100:Vocab.c100 > 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... > 0     0.37      0.29    -0.06     0.89      11.58
##   Post.Prob Star
## 1      0.92     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
hypothesis(m1b, "Median_Initial.c100 > 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... > 0     0.56      0.62    -0.51     1.47       6.78
##   Post.Prob Star
## 1      0.87     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
m1b <- add_criterion(m1b, "loo")
## Warning: Found 17 observations with a pareto_k > 0.7 in model 'm1b'. It is
## recommended to set 'moment_match = TRUE' in order to perform moment matching for
## problematic observations.
## Automatically saving the model object in 'm1b.rds'
tibble(m1b_k = m1b$criteria$loo$diagnostics$pareto_k) %>%
  ggplot(aes(x=m1b_k)) +
  geom_vline(xintercept=.5, linetype=2) +
  stat_dots()

library(patchwork)
p1 <- plot(marginal_effects(m0, "Median_Initial.c100"), points=TRUE) 
## Warning: Method 'marginal_effects' is deprecated. Please use
## 'conditional_effects' instead.

p1[[1]] + xlab("Onset Neighbourhood Density \n(Centred and divided by 100)") + theme_bw()|
p1[[1]] + xlab("Onset Neighbourhood Density \n(Centred and divided by 100)") + theme_bw() + ylim(c(200, 1000))
## Warning: Removed 82 rows containing missing values (geom_point).

p2 <- plot(marginal_effects(m1b, "Median_Initial.c100:Vocab.c100"), points=TRUE)
## Warning: Method 'marginal_effects' is deprecated. Please use
## 'conditional_effects' instead.

p2a <- p2[[1]] +  xlab("Onset Neighbourhood Density \n(Centred and divided by 100)") + theme_bw() +
scale_colour_discrete(name = "Vocab", labels = c("High", "Medium", "Low")) + 
scale_fill_discrete(name = "Vocab", labels = c("High", "Medium", "Low")) 
p2b <- p2[[1]] +  xlab("Onset Neighbourhood Density \n(Centred and divided by 100)") + theme_bw() +
scale_colour_discrete(name = "Vocab", labels = c("High", "Medium", "Low")) + 
scale_fill_discrete(name = "Vocab", labels = c("High", "Medium", "Low"))  + 
  ylim(c(200, 1000))
m1b %>%
  posterior_samples %>%
  select("b_Median_Initial.c100", "b_Median_Initial.c100:Vocab.c100") %>%
  mutate(
    Below_Mean =  b_Median_Initial.c100 - 1.28839*`b_Median_Initial.c100:Vocab.c100`,
    At_Mean = b_Median_Initial.c100 - 0.1901011*`b_Median_Initial.c100:Vocab.c100`, 
    Above_Mean = b_Median_Initial.c100 + 0.9081879*`b_Median_Initial.c100:Vocab.c100`
 ) %>%
  select(Below_Mean, At_Mean, Above_Mean) %>%
  pivot_longer(everything()) %>%
  group_by(name) %>%
  mean_hdi()
remove(m1)
remove(m1b)
remove(m0)

Split dataset by high and low vocbaulary groups

low_only <- filter(RT_30mo, VocabSplit=="low")
high_only <- filter(RT_30mo, VocabSplit=="high")
m2 <- brm(RT ~ Median_Initial.c100 + First_Instance + logfreq.c100  + TargetProp + PartTargetProp + Duration.c100 + Vocab.c100+ AoA.c100+ (1 + Median_Initial.c100 + First_Instance + logfreq.c100 + PartTargetProp   + TargetProp + Duration.c100 + PartTargetProp + AoA.c100 || ParticipantName) + (1 +  First_Instance + Vocab.c100 + PartTargetProp  || Target), family="shifted_lognormal", data=high_only, chains=4, file="m2", iter=5000, cores=8, save_all_pars=TRUE)


m2 <- add_criterion(m2, "loo")
## Automatically saving the model object in 'm2.rds'
tibble(m2_k = m2$criteria$loo$diagnostics$pareto_k) %>%
  ggplot(aes(x=m2_k)) +
  geom_vline(xintercept=.5, linetype=2) +
  stat_dots()

summary(m2)
##  Family: shifted_lognormal 
##   Links: mu = identity; sigma = identity; ndt = identity 
## Formula: RT ~ Median_Initial.c100 + First_Instance + logfreq.c100 + TargetProp + PartTargetProp + Duration.c100 + Vocab.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + logfreq.c100 + PartTargetProp + TargetProp + Duration.c100 + PartTargetProp + AoA.c100 || ParticipantName) + (1 + First_Instance + Vocab.c100 + PartTargetProp || Target) 
##    Data: high_only (Number of observations: 616) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 52) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.11      0.07     0.01     0.25 1.00     1463
## sd(Median_Initial.c100)     0.85      0.45     0.06     1.73 1.00     2180
## sd(First_Instance)          0.09      0.06     0.00     0.22 1.00     3650
## sd(logfreq.c100)            5.90      5.40     0.17    19.15 1.00     2452
## sd(PartTargetProp)          0.21      0.13     0.01     0.47 1.00     1765
## sd(TargetProp)              0.19      0.12     0.01     0.42 1.00     1757
## sd(Duration.c100)           0.08      0.04     0.01     0.16 1.00     2288
## sd(AoA.c100)                1.95      1.28     0.09     4.74 1.00     3216
##                         Tail_ESS
## sd(Intercept)               3935
## sd(Median_Initial.c100)     3165
## sd(First_Instance)          5576
## sd(logfreq.c100)            4175
## sd(PartTargetProp)          4195
## sd(TargetProp)              3807
## sd(Duration.c100)           2920
## sd(AoA.c100)                4594
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.08      0.06     0.00     0.22 1.00     3634     4935
## sd(First_Instance)     0.14      0.08     0.01     0.31 1.00     3010     3772
## sd(Vocab.c100)         0.08      0.06     0.00     0.22 1.00     5135     5568
## sd(PartTargetProp)     0.16      0.12     0.01     0.43 1.00     3704     5220
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept               6.40      0.34     5.75     7.08 1.00     8928     7543
## Median_Initial.c100     0.83      0.52    -0.23     1.84 1.00     7488     6438
## First_Instance         -0.07      0.07    -0.21     0.06 1.00     9661     8125
## logfreq.c100            1.72      6.17   -10.20    14.21 1.00     7607     6186
## TargetProp             -1.46      0.64    -2.79    -0.21 1.00     8009     7004
## PartTargetProp          0.01      0.23    -0.45     0.47 1.00    12130     7395
## Duration.c100          -0.01      0.05    -0.11     0.09 1.00     6980     5838
## Vocab.c100              0.04      0.10    -0.16     0.24 1.00    10473     7193
## AoA.c100                1.49      2.02    -2.27     5.71 1.00     6950     5981
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.64      0.04     0.56     0.72 1.00     5686     5644
## ndt     156.09     10.96   131.75   174.81 1.00     7059     6096
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(m2, "Median_Initial.c100 > 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... > 0     0.83      0.52    -0.03     1.67      16.95
##   Post.Prob Star
## 1      0.94     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
high_only%>%
  mutate(
    m1_k = m2$criteria$loo$diagnostics$pareto_k
  ) %>%
  filter(m1_k > .7)
m2b <- high_only%>%
  mutate(
    m1_k = m2$criteria$loo$diagnostics$pareto_k
  ) %>%
  filter(m1_k < .7) %>%
  brm(RT ~ Median_Initial.c100+ Vocab.c100 + First_Instance + logfreq.c100  + First_Instance + TargetProp +  PartTargetProp +  Duration.c100  +  AoA.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100  + logfreq.c100 + AoA.c100|| ParticipantName) + (1 +  Vocab.c100 + First_Instance + PartTargetProp  || Target), family="shifted_lognormal", file="m2b", data=., prior=prior(student_t(3,0,2), class=sd), chains=4, iter=5000, cores=8, save_all_pars=TRUE)
summary(m2b)
##  Family: shifted_lognormal 
##   Links: mu = identity; sigma = identity; ndt = identity 
## Formula: RT ~ Median_Initial.c100 + Vocab.c100 + First_Instance + logfreq.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + logfreq.c100 + AoA.c100 || ParticipantName) + (1 + Vocab.c100 + First_Instance + PartTargetProp || Target) 
##    Data: . (Number of observations: 616) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 52) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.11      0.07     0.00     0.25 1.00     1901
## sd(Median_Initial.c100)     0.81      0.45     0.05     1.70 1.00     3232
## sd(First_Instance)          0.09      0.06     0.00     0.22 1.00     3946
## sd(TargetProp)              0.18      0.12     0.01     0.43 1.00     2034
## sd(PartTargetProp)          0.21      0.13     0.01     0.47 1.00     1944
## sd(Duration.c100)           0.08      0.04     0.01     0.16 1.00     2514
## sd(logfreq.c100)            4.41      4.83     0.10    17.75 1.00     3061
## sd(AoA.c100)                1.76      1.22     0.08     4.50 1.00     3748
##                         Tail_ESS
## sd(Intercept)               4525
## sd(Median_Initial.c100)     4536
## sd(First_Instance)          5343
## sd(TargetProp)              4744
## sd(PartTargetProp)          3797
## sd(Duration.c100)           4042
## sd(logfreq.c100)            3715
## sd(AoA.c100)                6213
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.08      0.06     0.00     0.23 1.00     3705     4781
## sd(Vocab.c100)         0.08      0.06     0.00     0.22 1.00     5898     5569
## sd(First_Instance)     0.14      0.08     0.01     0.32 1.00     3372     5295
## sd(PartTargetProp)     0.16      0.12     0.01     0.45 1.00     3359     5412
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept               6.41      0.34     5.76     7.09 1.00    11285     7372
## Median_Initial.c100     0.82      0.53    -0.22     1.83 1.00     9142     6776
## Vocab.c100              0.04      0.10    -0.17     0.24 1.00    15388     7352
## First_Instance         -0.07      0.07    -0.21     0.07 1.00    13295     8081
## logfreq.c100            1.71      6.25   -10.74    14.16 1.00     9516     7265
## TargetProp             -1.48      0.63    -2.74    -0.28 1.00    10824     7050
## PartTargetProp          0.02      0.23    -0.43     0.46 1.00    14656     8589
## Duration.c100          -0.01      0.05    -0.11     0.09 1.00     8378     5941
## AoA.c100                1.52      2.09    -2.36     5.93 1.00     7968     6346
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.64      0.04     0.57     0.72 1.00     8662     7816
## ndt     156.43     10.61   132.84   174.69 1.00    11185     8060
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(m2b, "Median_Initial.c100 > 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... > 0     0.82      0.53    -0.06     1.67      15.34
##   Post.Prob Star
## 1      0.94     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.

Low vocabulary participants.

m3 <- brm(RT ~ Median_Initial.c100 + First_Instance+ logfreq.c100 + Vocab.c100 + PartTargetProp + TargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + logfreq.c100 + Duration.c100+ PartTargetProp + TargetProp + AoA.c100 || ParticipantName) + (1 +  First_Instance + Vocab.c100 + PartTargetProp  || Target), family="shifted_lognormal", data=low_only, chains=4, iter=1000, file="m3", cores=8, save_all_pars=TRUE)

m3 <- add_criterion(m3, "loo")
## Warning: Found 2 observations with a pareto_k > 0.7 in model 'm3'. It is
## recommended to set 'moment_match = TRUE' in order to perform moment matching for
## problematic observations.
## Automatically saving the model object in 'm3.rds'
tibble(m3_k = m3$criteria$loo$diagnostics$pareto_k) %>%
  ggplot(aes(x=m3_k)) +
  geom_vline(xintercept=.5, linetype=2) +
  stat_dots()

summary(m3)
##  Family: shifted_lognormal 
##   Links: mu = identity; sigma = identity; ndt = identity 
## Formula: RT ~ Median_Initial.c100 + First_Instance + logfreq.c100 + Vocab.c100 + PartTargetProp + TargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + logfreq.c100 + Duration.c100 + PartTargetProp + TargetProp + AoA.c100 || ParticipantName) + (1 + First_Instance + Vocab.c100 + PartTargetProp || Target) 
##    Data: low_only (Number of observations: 571) 
## Samples: 4 chains, each with iter = 1000; warmup = 500; thin = 1;
##          total post-warmup samples = 2000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 48) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.10      0.06     0.00     0.23 1.01      335
## sd(Median_Initial.c100)     1.06      0.42     0.20     1.87 1.00      510
## sd(First_Instance)          0.11      0.07     0.01     0.25 1.00      571
## sd(logfreq.c100)            2.09      1.74     0.08     6.27 1.00     1501
## sd(Duration.c100)           0.03      0.03     0.00     0.09 1.00      675
## sd(PartTargetProp)          0.25      0.13     0.02     0.51 1.00      286
## sd(TargetProp)              0.15      0.10     0.01     0.37 1.00      363
## sd(AoA.c100)                1.75      1.21     0.06     4.47 1.01      602
##                         Tail_ESS
## sd(Intercept)                648
## sd(Median_Initial.c100)      558
## sd(First_Instance)          1086
## sd(logfreq.c100)             845
## sd(Duration.c100)            982
## sd(PartTargetProp)           316
## sd(TargetProp)               771
## sd(AoA.c100)                 982
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.07      0.05     0.00     0.18 1.00      865     1148
## sd(First_Instance)     0.06      0.05     0.00     0.18 1.00      906     1141
## sd(Vocab.c100)         0.03      0.03     0.00     0.10 1.00      699      768
## sd(PartTargetProp)     0.15      0.10     0.01     0.38 1.01      581      977
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept               6.04      0.27     5.51     6.57 1.00     1893     1568
## Median_Initial.c100     0.14      0.45    -0.76     1.02 1.00     1545     1373
## First_Instance          0.06      0.06    -0.05     0.18 1.00     2316     1535
## logfreq.c100            4.02      4.92    -6.14    13.73 1.00     1368     1399
## Vocab.c100             -0.08      0.05    -0.17     0.00 1.00     1313     1446
## PartTargetProp         -0.46      0.21    -0.86    -0.04 1.00     2164     1640
## TargetProp             -0.17      0.52    -1.23     0.82 1.00     1592     1589
## Duration.c100           0.03      0.04    -0.05     0.11 1.00     1537     1235
## AoA.c100                1.03      1.73    -2.25     4.48 1.00     1478     1146
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.57      0.04     0.51     0.65 1.00     1300     1461
## ndt     144.79     14.50   112.92   169.82 1.00     1263     1418
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(m3, "Median_Initial.c100 > 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... > 0     0.14      0.45    -0.61     0.89        1.8
##   Post.Prob Star
## 1      0.64     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
m3b <- low_only%>%
  mutate(
    m1_k = m3$criteria$loo$diagnostics$pareto_k
  ) %>%
  filter(m1_k < .7) %>%
  brm(RT ~ Median_Initial.c100+ Vocab.c100 + First_Instance + logfreq.c100  + First_Instance + TargetProp +  PartTargetProp + Duration.c100  +   AoA.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + PartTargetProp +Duration.c100  +  logfreq.c100 + AoA.c100|| ParticipantName) + (1 +  Vocab.c100 + First_Instance + PartTargetProp  || Target), family="shifted_lognormal", file="m3b", data=., prior=prior(student_t(3,0,2), class=sd), chains=4, iter=1000, cores=8, save_all_pars=TRUE)
summary(m3b)
##  Family: shifted_lognormal 
##   Links: mu = identity; sigma = identity; ndt = identity 
## Formula: RT ~ Median_Initial.c100 + Vocab.c100 + First_Instance + logfreq.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + logfreq.c100 + AoA.c100 || ParticipantName) + (1 + Vocab.c100 + First_Instance + PartTargetProp || Target) 
##    Data: . (Number of observations: 569) 
## Samples: 4 chains, each with iter = 1000; warmup = 500; thin = 1;
##          total post-warmup samples = 2000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 48) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.12      0.07     0.01     0.24 1.00      295
## sd(Median_Initial.c100)     1.00      0.44     0.12     1.86 1.01      436
## sd(First_Instance)          0.11      0.07     0.00     0.26 1.02      498
## sd(TargetProp)              0.13      0.10     0.01     0.35 1.02      404
## sd(PartTargetProp)          0.25      0.13     0.02     0.49 1.01      293
## sd(Duration.c100)           0.03      0.02     0.00     0.09 1.00     1000
## sd(logfreq.c100)            1.74      1.47     0.07     5.58 1.00     1736
## sd(AoA.c100)                1.48      1.07     0.07     4.03 1.00      700
##                         Tail_ESS
## sd(Intercept)                750
## sd(Median_Initial.c100)      433
## sd(First_Instance)           793
## sd(TargetProp)               633
## sd(PartTargetProp)           498
## sd(Duration.c100)           1039
## sd(logfreq.c100)            1308
## sd(AoA.c100)                1071
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.07      0.05     0.00     0.20 1.00      697      861
## sd(Vocab.c100)         0.03      0.02     0.00     0.09 1.00     1092      735
## sd(First_Instance)     0.06      0.05     0.00     0.18 1.00      706      889
## sd(PartTargetProp)     0.16      0.10     0.01     0.40 1.00      709     1058
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept               6.07      0.29     5.45     6.64 1.00     1521     1160
## Median_Initial.c100     0.11      0.46    -0.79     1.02 1.00     1516     1251
## Vocab.c100             -0.08      0.05    -0.17     0.01 1.00     1551     1178
## First_Instance          0.07      0.06    -0.04     0.18 1.00     2808     1426
## logfreq.c100            4.32      5.43    -6.38    15.59 1.00     1244     1001
## TargetProp             -0.26      0.55    -1.35     0.87 1.00     1549     1367
## PartTargetProp         -0.44      0.21    -0.84    -0.04 1.00     2214     1571
## Duration.c100           0.03      0.04    -0.05     0.11 1.00     1484     1196
## AoA.c100                0.96      1.88    -2.57     4.86 1.00     1462     1250
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.57      0.03     0.50     0.64 1.00     1297     1105
## ndt     144.56     14.47   112.73   169.15 1.00     1405     1185
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
remove(m2)
remove(m2b)
remove(m3)
remove(m3b)

Proportion of Looks to Target

LT_30mo$Prop2 <- ((LT_30mo$Prop)*(LT_30mo$SamplesTotal-1) + 1/2)/LT_30mo$SamplesTotal
LT_30mo <- mutate(LT_30mo, 
Vocab.c100 = (Vocab.c - median(Vocab.c))/100,
AoA.c100 = (Percent_75_Amer - mean(Percent_75_Amer))/100,
Median_Initial.c100 = Median_Initial.c/100,
logfreq.c100 = logfreq.c/100, 
Duration.c100 = (Duration - mean(Duration))/100)

Get descriptive statistics for proportions

LT_30mo %>%
  group_by(Target) %>%
  summarise(
    Prop_mean = mean(Prop, na.rm=TRUE), 
    Prop_sd = sd(Prop, na.rm=TRUE),
  )
## `summarise()` ungrouping output (override with `.groups` argument)
m4 <- brm(Prop2 ~ Median_Initial.c100 + Vocab.c100 + logfreq.c100 +  First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100  + (1 + Median_Initial.c100  + TargetProp + PartTargetProp+ logfreq.c100 + Duration.c100 +  First_Instance + AoA.c100|| ParticipantName) + (1 + First_Instance  + Vocab.c100 +  PartTargetProp  || Target),prior=prior(student_t(5,0,2), class=sd), file="m4", family=Beta("logit", "log"), data=LT_30mo, chains=4,  cores=8, iter=5000, save_all_pars=TRUE)

m4 <- add_criterion(m4, "loo")
## Automatically saving the model object in 'm4.rds'
tibble(m4_k = m4$criteria$loo$diagnostics$pareto_k) %>%
  ggplot(aes(x=m4_k)) +
  geom_vline(xintercept=.5, linetype=2) +
  stat_dots()

loo(m4)
## 
## Computed from 10000 by 3401 log-likelihood matrix
## 
##          Estimate    SE
## elpd_loo   2545.1  76.1
## p_loo        97.0   3.0
## looic     -5090.1 152.2
## ------
## Monte Carlo SE of elpd_loo is 0.1.
## 
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
summary(m4)
## Warning: There were 7 divergent transitions after warmup. Increasing adapt_delta
## above 0.8 may help. See http://mc-stan.org/misc/warnings.html#divergent-
## transitions-after-warmup
##  Family: beta 
##   Links: mu = logit; phi = identity 
## Formula: Prop2 ~ Median_Initial.c100 + Vocab.c100 + logfreq.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + TargetProp + PartTargetProp + logfreq.c100 + Duration.c100 + First_Instance + AoA.c100 || ParticipantName) + (1 + First_Instance + Vocab.c100 + PartTargetProp || Target) 
##    Data: LT_30mo (Number of observations: 3401) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 100) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.20      0.04     0.09     0.27 1.00      815
## sd(Median_Initial.c100)     0.30      0.22     0.01     0.81 1.00     3548
## sd(TargetProp)              0.11      0.08     0.01     0.30 1.00      905
## sd(PartTargetProp)          0.11      0.08     0.00     0.30 1.00      775
## sd(logfreq.c100)            1.72      1.44     0.06     5.51 1.00     6068
## sd(Duration.c100)           0.02      0.02     0.00     0.06 1.00     4389
## sd(First_Instance)          0.07      0.05     0.00     0.18 1.00     2069
## sd(AoA.c100)                1.10      0.80     0.05     2.96 1.00     3203
##                         Tail_ESS
## sd(Intercept)                666
## sd(Median_Initial.c100)     4491
## sd(TargetProp)              1245
## sd(PartTargetProp)           752
## sd(logfreq.c100)            4375
## sd(Duration.c100)           4113
## sd(First_Instance)          3832
## sd(AoA.c100)                4289
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.08      0.05     0.01     0.20 1.00     1958     3412
## sd(First_Instance)     0.11      0.06     0.01     0.23 1.00     2545     2281
## sd(Vocab.c100)         0.02      0.02     0.00     0.06 1.00     5836     4733
## sd(PartTargetProp)     0.13      0.08     0.01     0.32 1.00     2161     3510
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept              -0.84      0.26    -1.38    -0.34 1.00     4785     3721
## Median_Initial.c100    -0.55      0.38    -1.29     0.22 1.00     5008     5152
## Vocab.c100              0.01      0.03    -0.04     0.07 1.00     5651     6809
## logfreq.c100            0.79      4.72    -9.20     9.82 1.00     4862     5141
## First_Instance          0.00      0.05    -0.09     0.10 1.00     6857     6325
## TargetProp              2.45      0.48     1.53     3.41 1.00     4561     3753
## PartTargetProp          1.29      0.14     1.02     1.55 1.00     9799     7415
## Duration.c100           0.01      0.04    -0.05     0.09 1.00     4320     4189
## AoA.c100               -1.29      1.62    -4.77     1.72 1.00     3986     4200
## 
## Family Specific Parameters: 
##     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi     2.39      0.06     2.27     2.51 1.00    11670     6929
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
pp_check(m4)
## Using 10 posterior samples for ppc type 'dens_overlay' by default.

p3 <- plot(conditional_effects(m4, "Median_Initial.c100"), theme(axis.title.x=element_text(size=2000)), points=TRUE)  

p3[[1]] + xlab("Onset Neighbourhood Density \n(Centred and divided by 100)") + ylab("Proportion of Looks to Target") |
p3[[1]] + xlab("Onset Neighbourhood Density \n(Centred and divided by 100)")+ ylab("Proportion of Looks to Target") + ylim(.5, 1)
## Warning: Removed 432 rows containing missing values (geom_point).

hypothesis(m4, "Median_Initial.c100 < 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... < 0    -0.55      0.38    -1.15     0.07      13.39
##   Post.Prob Star
## 1      0.93     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
m5 <- brm(Prop2 ~ Median_Initial.c100*Vocab.c100 + First_Instance + logfreq.c100  + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100+   (1 + Median_Initial.c100 +First_Instance + TargetProp  + logfreq.c100 + PartTargetProp + Duration.c100 + AoA.c100|| ParticipantName) + (1 +  Vocab.c100 +First_Instance ++ PartTargetProp  || Target), ,prior=prior(student_t(5,0,2), class=sd),  family=Beta("logit", "log"), data=LT_30mo, chains=4, file="m5", iter=5000,  cores=8, save_all_pars=TRUE)

m5 <- add_criterion(m5, "loo")
## Automatically saving the model object in 'm5.rds'
pp_check(m5)
## Using 10 posterior samples for ppc type 'dens_overlay' by default.

tibble(m5_k = m5$criteria$loo$diagnostics$pareto_k) %>%
  ggplot(aes(x=m5_k)) +
  geom_vline(xintercept=.5, linetype=2) +
  stat_dots()

summary(m5)
##  Family: beta 
##   Links: mu = logit; phi = identity 
## Formula: Prop2 ~ Median_Initial.c100 * Vocab.c100 + First_Instance + logfreq.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + TargetProp + logfreq.c100 + PartTargetProp + Duration.c100 + AoA.c100 || ParticipantName) + (1 + Vocab.c100 + First_Instance + +PartTargetProp || Target) 
##    Data: LT_30mo (Number of observations: 3401) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 100) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.20      0.04     0.11     0.27 1.00     1187
## sd(Median_Initial.c100)     0.32      0.23     0.01     0.83 1.00     3375
## sd(First_Instance)          0.07      0.05     0.00     0.18 1.00     2169
## sd(TargetProp)              0.10      0.08     0.00     0.29 1.00     1238
## sd(logfreq.c100)            1.73      1.44     0.07     5.38 1.00     5316
## sd(PartTargetProp)          0.11      0.08     0.01     0.29 1.00     1079
## sd(Duration.c100)           0.02      0.01     0.00     0.06 1.00     4491
## sd(AoA.c100)                1.10      0.79     0.05     2.92 1.00     3547
##                         Tail_ESS
## sd(Intercept)               1466
## sd(Median_Initial.c100)     4106
## sd(First_Instance)          3553
## sd(TargetProp)              1683
## sd(logfreq.c100)            4061
## sd(PartTargetProp)          1914
## sd(Duration.c100)           4580
## sd(AoA.c100)                4126
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.08      0.05     0.00     0.20 1.00     1992     3493
## sd(Vocab.c100)         0.02      0.02     0.00     0.06 1.00     6098     5155
## sd(First_Instance)     0.11      0.06     0.01     0.23 1.00     2355     2181
## sd(PartTargetProp)     0.13      0.08     0.01     0.32 1.00     1991     3844
## 
## Population-Level Effects: 
##                                Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept                         -0.84      0.26    -1.39    -0.33 1.00
## Median_Initial.c100               -0.53      0.38    -1.27     0.23 1.00
## Vocab.c100                         0.01      0.03    -0.05     0.07 1.00
## First_Instance                     0.00      0.05    -0.09     0.10 1.00
## logfreq.c100                       0.90      4.78    -9.07    10.08 1.00
## TargetProp                         2.45      0.47     1.54     3.43 1.00
## PartTargetProp                     1.29      0.14     1.01     1.55 1.00
## Duration.c100                      0.01      0.04    -0.06     0.09 1.00
## AoA.c100                          -1.29      1.63    -4.72     1.77 1.00
## Median_Initial.c100:Vocab.c100     0.11      0.18    -0.24     0.46 1.00
##                                Bulk_ESS Tail_ESS
## Intercept                          5098     4606
## Median_Initial.c100                6759     6655
## Vocab.c100                         5890     6972
## First_Instance                     7238     6767
## logfreq.c100                       4821     4821
## TargetProp                         5144     4814
## PartTargetProp                    11208     7869
## Duration.c100                      4867     4927
## AoA.c100                           4181     5008
## Median_Initial.c100:Vocab.c100    11182     7586
## 
## Family Specific Parameters: 
##     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi     2.39      0.06     2.28     2.51 1.00    11833     7747
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(m5, "Median_Initial.c100:Vocab.c100 > 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... > 0     0.11      0.18    -0.18     0.41       2.85
##   Post.Prob Star
## 1      0.74     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
hypothesis(m5, "Median_Initial.c100 < 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... < 0    -0.53      0.38    -1.13     0.09      11.79
##   Post.Prob Star
## 1      0.92     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
p1 <- plot(marginal_effects(m4, "Median_Initial.c100")) 
## Warning: Method 'marginal_effects' is deprecated. Please use
## 'conditional_effects' instead.

p1[[1]] + xlab("Onset Neighbourhood Density \n(Centred and divided by 100)") + theme_bw()

p2 <- plot(marginal_effects(m5, "Median_Initial.c100:Vocab.c100"), points=TRUE)
## Warning: Method 'marginal_effects' is deprecated. Please use
## 'conditional_effects' instead.

p5<- p2[[1]] +  xlab("Onset Neighbourhood Density \n(Centred and divided by 100)") + theme_bw() +
scale_colour_discrete(name = "Vocab", labels = c("High", "Medium", "Low")) + 
scale_fill_discrete(name = "Vocab", labels = c("High", "Medium", "Low")) + 
  ylab("Proportion of Looks to Target") 

p6<- p2[[1]] +  xlab("Onset Neighbourhood Density \n(Centred and divided by 100)") + theme_bw() +
scale_colour_discrete(name = "Vocab", labels = c("High", "Medium", "Low")) + 
scale_fill_discrete(name = "Vocab", labels = c("High", "Medium", "Low")) + 
  ylab("Proportion of Looks to Target") + ylim(.5, 1)

p5 + p6 + plot_layout(guides = "collect")
## Warning: Removed 432 rows containing missing values (geom_point).

Split by vocabulary

low_only <- filter(LT_30mo, VocabSplit == "low")
high_only <- filter(LT_30mo, VocabSplit == "high")
m6 <- brm(Prop2 ~ Median_Initial.c100 + Vocab.c100 + First_Instance + logfreq.c100  + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 +First_Instance + logfreq.c + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 || ParticipantName) + (1 +  Vocab.c100 +First_Instance + PartTargetProp || Target),  family=Beta("logit", "log"), data=high_only, iter=5000, file="m6", chains=4,  cores=8, save_all_pars=TRUE)


m6 <- add_criterion(m6, "loo")
## Automatically saving the model object in 'm6.rds'
summary(m6)
## Warning: There were 1 divergent transitions after warmup. Increasing adapt_delta
## above 0.8 may help. See http://mc-stan.org/misc/warnings.html#divergent-
## transitions-after-warmup
##  Family: beta 
##   Links: mu = logit; phi = identity 
## Formula: Prop2 ~ Median_Initial.c100 + Vocab.c100 + First_Instance + logfreq.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + logfreq.c + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 || ParticipantName) + (1 + Vocab.c100 + First_Instance + PartTargetProp || Target) 
##    Data: high_only (Number of observations: 1739) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 52) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.16      0.07     0.02     0.28 1.00      870
## sd(Median_Initial.c100)     0.32      0.24     0.01     0.92 1.00     5092
## sd(First_Instance)          0.06      0.05     0.00     0.17 1.00     3951
## sd(logfreq.c)               0.07      0.04     0.00     0.17 1.00     2918
## sd(TargetProp)              0.15      0.11     0.01     0.39 1.01     1091
## sd(PartTargetProp)          0.16      0.11     0.01     0.38 1.00     1273
## sd(Duration.c100)           0.03      0.02     0.00     0.07 1.00     5067
## sd(AoA.c100)                1.34      0.99     0.05     3.68 1.00     4001
##                         Tail_ESS
## sd(Intercept)               1302
## sd(Median_Initial.c100)     4120
## sd(First_Instance)          4283
## sd(logfreq.c)               3859
## sd(TargetProp)              2458
## sd(PartTargetProp)          2948
## sd(Duration.c100)           4621
## sd(AoA.c100)                4392
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.05      0.04     0.00     0.15 1.00     4282     4637
## sd(Vocab.c100)         0.10      0.07     0.00     0.25 1.00     2784     4010
## sd(First_Instance)     0.13      0.07     0.01     0.28 1.00     2623     3509
## sd(PartTargetProp)     0.09      0.07     0.00     0.26 1.00     4024     4289
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept              -0.96      0.29    -1.53    -0.39 1.00     5462     6841
## Median_Initial.c100    -0.34      0.42    -1.15     0.48 1.00     6502     6460
## Vocab.c100              0.07      0.11    -0.14     0.28 1.00     6869     7263
## First_Instance          0.10      0.06    -0.02     0.23 1.00     9004     6982
## logfreq.c100            3.78      5.15    -6.45    13.85 1.00     6129     5908
## TargetProp              2.53      0.52     1.52     3.56 1.00     5195     6638
## PartTargetProp          1.26      0.19     0.89     1.63 1.00     9843     7332
## Duration.c100          -0.00      0.04    -0.08     0.08 1.00     5436     5376
## AoA.c100                0.21      1.72    -3.29     3.52 1.00     5271     4869
## 
## Family Specific Parameters: 
##     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi     2.40      0.08     2.24     2.57 1.00    10547     7182
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
tibble(m6_k = m6$criteria$loo$diagnostics$pareto_k) %>%
  ggplot(aes(x=m6_k)) +
  geom_vline(xintercept=.5, linetype=2) +
  stat_dots()

#saveRDS(m6, "Z:/Analyses/LWL_30mt_after_01_10_19/Subgroup_Analyses/m6.Rds")
summary(m6)
## Warning: There were 1 divergent transitions after warmup. Increasing adapt_delta
## above 0.8 may help. See http://mc-stan.org/misc/warnings.html#divergent-
## transitions-after-warmup
##  Family: beta 
##   Links: mu = logit; phi = identity 
## Formula: Prop2 ~ Median_Initial.c100 + Vocab.c100 + First_Instance + logfreq.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + logfreq.c + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 || ParticipantName) + (1 + Vocab.c100 + First_Instance + PartTargetProp || Target) 
##    Data: high_only (Number of observations: 1739) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 52) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.16      0.07     0.02     0.28 1.00      870
## sd(Median_Initial.c100)     0.32      0.24     0.01     0.92 1.00     5092
## sd(First_Instance)          0.06      0.05     0.00     0.17 1.00     3951
## sd(logfreq.c)               0.07      0.04     0.00     0.17 1.00     2918
## sd(TargetProp)              0.15      0.11     0.01     0.39 1.01     1091
## sd(PartTargetProp)          0.16      0.11     0.01     0.38 1.00     1273
## sd(Duration.c100)           0.03      0.02     0.00     0.07 1.00     5067
## sd(AoA.c100)                1.34      0.99     0.05     3.68 1.00     4001
##                         Tail_ESS
## sd(Intercept)               1302
## sd(Median_Initial.c100)     4120
## sd(First_Instance)          4283
## sd(logfreq.c)               3859
## sd(TargetProp)              2458
## sd(PartTargetProp)          2948
## sd(Duration.c100)           4621
## sd(AoA.c100)                4392
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.05      0.04     0.00     0.15 1.00     4282     4637
## sd(Vocab.c100)         0.10      0.07     0.00     0.25 1.00     2784     4010
## sd(First_Instance)     0.13      0.07     0.01     0.28 1.00     2623     3509
## sd(PartTargetProp)     0.09      0.07     0.00     0.26 1.00     4024     4289
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept              -0.96      0.29    -1.53    -0.39 1.00     5462     6841
## Median_Initial.c100    -0.34      0.42    -1.15     0.48 1.00     6502     6460
## Vocab.c100              0.07      0.11    -0.14     0.28 1.00     6869     7263
## First_Instance          0.10      0.06    -0.02     0.23 1.00     9004     6982
## logfreq.c100            3.78      5.15    -6.45    13.85 1.00     6129     5908
## TargetProp              2.53      0.52     1.52     3.56 1.00     5195     6638
## PartTargetProp          1.26      0.19     0.89     1.63 1.00     9843     7332
## Duration.c100          -0.00      0.04    -0.08     0.08 1.00     5436     5376
## AoA.c100                0.21      1.72    -3.29     3.52 1.00     5271     4869
## 
## Family Specific Parameters: 
##     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi     2.40      0.08     2.24     2.57 1.00    10547     7182
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(m6, "Median_Initial.c100 < 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... < 0    -0.34      0.42       -1     0.34       3.96
##   Post.Prob Star
## 1       0.8     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.
m7 <- brm(Prop2 ~ Median_Initial.c100 + Vocab.c100 + First_Instance + logfreq.c100  + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100+ (1 + Median_Initial.c100 +First_Instance  + logfreq.c100  + TargetProp + PartTargetProp + Duration.c100+ AoA.c100|| ParticipantName) + (1 +  Vocab.c100 +First_Instance + PartTargetProp || Target),  family=Beta("logit", "log"),prior=prior(student_t(5,0,2), class=sd),  data=low_only, chains=4, file="m7", iter=5000, cores=8, save_all_pars=TRUE)

m7 <- add_criterion(m7, "loo")
## Automatically saving the model object in 'm7.rds'
summary(m7)
##  Family: beta 
##   Links: mu = logit; phi = identity 
## Formula: Prop2 ~ Median_Initial.c100 + Vocab.c100 + First_Instance + logfreq.c100 + First_Instance + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 + (1 + Median_Initial.c100 + First_Instance + logfreq.c100 + TargetProp + PartTargetProp + Duration.c100 + AoA.c100 || ParticipantName) + (1 + Vocab.c100 + First_Instance + PartTargetProp || Target) 
##    Data: low_only (Number of observations: 1662) 
## Samples: 4 chains, each with iter = 5000; warmup = 2500; thin = 1;
##          total post-warmup samples = 10000
## 
## Group-Level Effects: 
## ~ParticipantName (Number of levels: 48) 
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)               0.19      0.07     0.02     0.31 1.00      962
## sd(Median_Initial.c100)     0.54      0.36     0.02     1.33 1.00     2849
## sd(First_Instance)          0.13      0.08     0.01     0.29 1.00     1999
## sd(logfreq.c100)            1.80      1.59     0.06     5.84 1.00     6868
## sd(TargetProp)              0.16      0.12     0.01     0.42 1.00     1220
## sd(PartTargetProp)          0.15      0.10     0.01     0.39 1.00     1439
## sd(Duration.c100)           0.03      0.02     0.00     0.09 1.00     4274
## sd(AoA.c100)                1.36      1.00     0.05     3.68 1.00     3669
##                         Tail_ESS
## sd(Intercept)               1355
## sd(Median_Initial.c100)     3828
## sd(First_Instance)          3219
## sd(logfreq.c100)            4367
## sd(TargetProp)              2250
## sd(PartTargetProp)          3016
## sd(Duration.c100)           4345
## sd(AoA.c100)                3763
## 
## ~Target (Number of levels: 18) 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)          0.10      0.07     0.01     0.25 1.00     2110     3728
## sd(Vocab.c100)         0.03      0.03     0.00     0.10 1.00     4566     4453
## sd(First_Instance)     0.10      0.07     0.01     0.25 1.00     2792     3746
## sd(PartTargetProp)     0.16      0.11     0.01     0.41 1.00     2297     4141
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept              -0.75      0.35    -1.47    -0.08 1.00     6117     5121
## Median_Initial.c100    -0.71      0.51    -1.72     0.32 1.00     5633     5483
## Vocab.c100             -0.01      0.05    -0.11     0.09 1.00     6378     6701
## First_Instance         -0.10      0.06    -0.22     0.02 1.00     9556     6878
## logfreq.c100           -1.01      6.44   -13.90    11.78 1.00     5317     5750
## TargetProp              2.36      0.63     1.17     3.67 1.00     5881     4742
## PartTargetProp          1.27      0.20     0.88     1.67 1.00    11506     7827
## Duration.c100           0.02      0.05    -0.07     0.12 1.00     4608     4699
## AoA.c100               -2.08      2.14    -6.54     1.90 1.00     4670     5237
## 
## Family Specific Parameters: 
##     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi     2.42      0.09     2.26     2.59 1.00    10536     7561
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
tibble(m7_k = m7$criteria$loo$diagnostics$pareto_k) %>%
  ggplot(aes(x=m7_k)) +
  geom_vline(xintercept=.5, linetype=2) +
  stat_dots()

hypothesis(m7, "Median_Initial.c100 < 0")
## Hypothesis Tests for class b:
##                 Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
## 1 (Median_Initial.c... < 0    -0.71      0.51    -1.53     0.13      12.19
##   Post.Prob Star
## 1      0.92     
## ---
## 'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
## '*': For one-sided hypotheses, the posterior probability exceeds 95%;
## for two-sided hypotheses, the value tested against lies outside the 95%-CI.
## Posterior probabilities of point hypotheses assume equal prior probabilities.