data <- read_excel("/Users/carolinaferreiraatuesta/Documents/Age and Epilepsy Surgery/data_age_surgery.xlsx")
## New names:
## * Several_OPs...150 -> Several_OPs
drop <- c("Lang-fMRI", "poMRI_Region", 'outcome1', "New_Psychological_Deficit",
'outcome2',
'outcome3',
'outcome4',
'outcome5',
'outcome6',
'outcome7',
'outcome8',
'outcome9',
'outcome10',
'outcome11',
'outcome12',
'outcome13',
'outcome14',
'outcome15',
'outcome16',
'outcome17',
'outcome18',
'outcome19',
'outcome20',
'outcome21',
'outcome22',
'outcome23',
'outcome24',
'outcome25')
data = data[,!(names(data) %in% drop)]
data$age_cat <- findInterval(data$age_at_surgery, c(0, 30, 50, 100), rightmost.closed = TRUE)
#tempdata <- mice(data1, m = 5, maxit = 50, meth = 'pmm', seed = 500, printFlag = FALSE)
#data <- mice::complete(tempdata,1)
rndr <- function(x, name, ...) {
if (length(x) == 0) {
y <- data[[name]]
s <- rep("", length(render.default(x=y, name=name, ...)))
if (is.numeric(y)) {
p <- fisher.test(y ~ data$age_cat)$p.value
} else {
p <- chisq.test(table(y, droplevels(data$age_cat)))$p.value
}
s[2] <- sub("<", "<", format.pval(p, digits=3, eps=0.001))
s
} else {
render.default(x=x, name=name, ...)
}
}
rndr.strat <- function(label, n, ...) {
ifelse(n==0, label, render.strat.default(label, n, ...))
}
table1(~
sex +
childconvul +
neuro_insult +
status_epilepticus +
family_history +
age_onset +
gtcs +
depression_pre +
psychosis_pre +
psychiatric_pre_any +
depression_post_surgery +
psychosis_post +
psychiatric_post_any +
new_depression +
new_psychosis +
new_psychiatric +
duration +
age_at_surgery +
Hand +
OP_Type +
op_side +
pathology +
died +
aeds +
relapse +
relapse_year +
last_follow +
mri_normal +
L8 +
R8 +
BIL8 +
AZM +
BRI +
CBZ +
CLB +
CZP +
DZP +
ESM +
FBM +
GBP +
LCS +
LTG +
LVT +
LZP +
MDL +
OCBZ +
PB +
PGB +
PHT +
PMD +
RUF +
SUL +
TGB +
TPM +
VGB +
VPA +
ZNS +
psych_subjective_improve +
VIQ_preop +
PIQ_preop +
VerbalMem_preop +
VisualMem_preop +
VIQ_3month +
PIQ_3month +
VerbalMem_3month +
VisualMem_3month +
VerbalDec_3month +
VisualDec_3month +
VIQ_1to2year +
PIQ_1to2year +
VerbalMem_1to2year +
VisualMem_1to2year +
VerbalDec_1to2year +
VisualDec_1to2year +
VIQ_3to5year +
PIQ_3to5year +
VerbalMem_3to5year +
VisualMem_3to5year +
VerbalDec_3to5year +
VisualDec_3to5year +
VIQ_10year +
PIQ_10year +
VerbalMem_10year +
VisualMem_10year +
VerbalDec_10year +
VisualDec_10year +
psych_verbal_learning_pre +
psych_verbal_recall_pre +
psych_visual_learning_pre +
psych_visual_recall_pre +
psych_verbal_learning_3m +
psych_verbal_recall_3m +
psych_visual_learning_3m +
psych_visual_recall_3m +
psych_verbal_learning_1y +
psych_verbal_recall_1y +
psych_visual_learning_1y +
psych_visual_recall_1y +
change_verbal_learning +
improve_VeL +
decline_VeL +
change_verbal_recall +
improve_VeR +
decline_VeR +
change_visual_learning +
improve_ViL +
decline_ViL +
change_visual_recall +
improve_ViR +
decline_ViR | age_cat, data=data, render=rndr, render.strat=rndr.strat)
| 1 (n=203) |
2 (n=292) |
3 (n=45) |
Overall (n=540) |
|
|---|---|---|---|---|
| sex | ||||
| Mean (SD) | 0.611 (0.489) | 0.517 (0.501) | 0.556 (0.503) | 0.556 (0.497) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| childconvul | ||||
| Mean (SD) | 0.444 (0.498) | 0.362 (0.482) | 0.136 (0.347) | 0.374 (0.484) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 5 (2.5%) | 5 (1.7%) | 1 (2.2%) | 11 (2.0%) |
| neuro_insult | ||||
| Mean (SD) | 0.438 (0.497) | 0.589 (0.493) | 0.489 (0.506) | 0.524 (0.500) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| status_epilepticus | ||||
| Mean (SD) | 0.0640 (0.245) | 0.0514 (0.221) | 0.0222 (0.149) | 0.0537 (0.226) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| family_history | ||||
| Mean (SD) | 0.271 (0.446) | 0.288 (0.453) | 0.333 (0.477) | 0.285 (0.452) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| age_onset | ||||
| Mean (SD) | 9.06 (6.32) | 13.1 (9.54) | 19.0 (16.2) | 12.0 (9.65) |
| Median [Min, Max] | 9.00 [0.00, 26.0] | 12.0 [0.00, 41.0] | 14.0 [0.00, 61.0] | 10.0 [0.00, 61.0] |
| Missing | 1 (0.5%) | 2 (0.7%) | 1 (2.2%) | 4 (0.7%) |
| gtcs | ||||
| Mean (SD) | 0.714 (0.453) | 0.716 (0.452) | 0.778 (0.420) | 0.720 (0.449) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| depression_pre | ||||
| Mean (SD) | 0.256 (0.438) | 0.284 (0.452) | 0.289 (0.458) | 0.274 (0.446) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| psychosis_pre | ||||
| Mean (SD) | 0.251 (0.435) | 0.291 (0.455) | 0.400 (0.495) | 0.285 (0.452) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| psychiatric_pre_any | ||||
| Mean (SD) | 0.296 (0.457) | 0.339 (0.474) | 0.444 (0.503) | 0.331 (0.471) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| depression_post_surgery | ||||
| Mean (SD) | 0.345 (0.476) | 0.325 (0.469) | 0.289 (0.458) | 0.330 (0.471) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| psychosis_post | ||||
| Mean (SD) | 0.389 (0.489) | 0.414 (0.493) | 0.289 (0.458) | 0.394 (0.489) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| psychiatric_post_any | ||||
| Mean (SD) | 0.547 (0.499) | 0.555 (0.498) | 0.400 (0.495) | 0.539 (0.499) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| new_depression | ||||
| Mean (SD) | 0.236 (0.426) | 0.161 (0.368) | 0.111 (0.318) | 0.185 (0.389) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| new_psychosis | ||||
| Mean (SD) | 0.374 (0.485) | 0.336 (0.473) | 0.200 (0.405) | 0.339 (0.474) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| new_psychiatric | ||||
| Mean (SD) | 0.212 (0.410) | 0.253 (0.436) | 0.178 (0.387) | 0.231 (0.422) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| duration | ||||
| Mean (SD) | 15.9 (6.86) | 25.5 (10.4) | 37.5 (15.7) | 22.9 (11.7) |
| Median [Min, Max] | 16.3 [2.44, 29.9] | 25.6 [3.52, 48.8] | 40.1 [4.32, 60.5] | 21.2 [2.44, 60.5] |
| age_at_surgery | ||||
| Mean (SD) | 24.9 (3.48) | 38.5 (5.54) | 56.1 (4.77) | 34.9 (10.2) |
| Median [Min, Max] | 25.6 [16.8, 30.0] | 38.0 [30.0, 49.5] | 54.6 [50.0, 68.1] | 33.3 [16.8, 68.1] |
| Hand | ||||
| Mean (SD) | 0.217 (0.519) | 0.223 (0.519) | 0.244 (0.484) | 0.222 (0.516) |
| Median [Min, Max] | 0.00 [0.00, 2.00] | 0.00 [0.00, 2.00] | 0.00 [0.00, 2.00] | 0.00 [0.00, 2.00] |
| OP_Type | ||||
| Mean (SD) | 0.892 (0.383) | 0.921 (0.282) | 0.911 (0.288) | 0.909 (0.324) |
| Median [Min, Max] | 1.00 [0.00, 2.00] | 1.00 [0.00, 2.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 2.00] |
| op_side | ||||
| Mean (SD) | 0.601 (0.491) | 0.507 (0.501) | 0.511 (0.506) | 0.543 (0.499) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| pathology | ||||
| CAV | 8 (3.9%) | 13 (4.5%) | 3 (6.7%) | 24 (4.4%) |
| DNT | 27 (13.3%) | 25 (8.6%) | 7 (15.6%) | 59 (10.9%) |
| DUAL | 5 (2.5%) | 8 (2.7%) | 2 (4.4%) | 15 (2.8%) |
| FCD | 5 (2.5%) | 6 (2.1%) | 3 (6.7%) | 14 (2.6%) |
| GL | 5 (2.5%) | 4 (1.4%) | 0 (0%) | 9 (1.7%) |
| HS | 134 (66.0%) | 212 (72.6%) | 27 (60.0%) | 373 (69.1%) |
| OTHER | 19 (9.4%) | 24 (8.2%) | 3 (6.7%) | 46 (8.5%) |
| died | ||||
| Mean (SD) | 0.0493 (0.217) | 0.0479 (0.214) | 0.111 (0.318) | 0.0537 (0.226) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| aeds | ||||
| Mean (SD) | 2.31 (0.870) | 2.46 (0.878) | 2.64 (0.802) | 2.41 (0.873) |
| Median [Min, Max] | 2.00 [0.00, 5.00] | 2.00 [0.00, 6.00] | 3.00 [1.00, 4.00] | 2.00 [0.00, 6.00] |
| relapse | ||||
| Mean (SD) | 0.660 (0.475) | 0.610 (0.489) | 0.733 (0.447) | 0.639 (0.481) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| relapse_year | ||||
| Mean (SD) | 5.73 (6.52) | 5.59 (6.06) | 2.71 (3.20) | 5.40 (6.11) |
| Median [Min, Max] | 2.00 [1.00, 23.0] | 2.00 [1.00, 24.0] | 1.00 [1.00, 15.0] | 2.00 [1.00, 24.0] |
| last_follow | ||||
| Mean (SD) | 14.5 (6.60) | 11.5 (6.04) | 7.33 (5.08) | 12.3 (6.51) |
| Median [Min, Max] | 16.0 [1.00, 25.0] | 12.0 [1.00, 24.0] | 6.00 [1.00, 19.0] | 13.0 [1.00, 25.0] |
| mri_normal | ||||
| Mean (SD) | 0.0591 (0.236) | 0.0651 (0.247) | 0.0222 (0.149) | 0.0593 (0.236) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| L8 | ||||
| Mean (SD) | 0.111 (0.315) | 0.218 (0.413) | 0.409 (0.497) | 0.194 (0.395) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 5 (2.5%) | 7 (2.4%) | 1 (2.2%) | 13 (2.4%) |
| R8 | ||||
| Mean (SD) | 0.0101 (0.100) | 0.0246 (0.155) | 0.0227 (0.151) | 0.0190 (0.137) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 5 (2.5%) | 7 (2.4%) | 1 (2.2%) | 13 (2.4%) |
| BIL8 | ||||
| Mean (SD) | 0.0202 (0.141) | 0.0386 (0.193) | 0.114 (0.321) | 0.0380 (0.191) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 5 (2.5%) | 7 (2.4%) | 1 (2.2%) | 13 (2.4%) |
| AZM | ||||
| Mean (SD) | 0.137 (0.345) | 0.161 (0.369) | 0.114 (0.321) | 0.148 (0.356) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| BRI | ||||
| Mean (SD) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) |
| Median [Min, Max] | 0.00 [0.00, 0.00] | 0.00 [0.00, 0.00] | 0.00 [0.00, 0.00] | 0.00 [0.00, 0.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| CBZ | ||||
| Mean (SD) | 0.975 (0.158) | 0.982 (0.132) | 0.864 (0.347) | 0.970 (0.172) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| CLB | ||||
| Mean (SD) | 0.569 (0.497) | 0.625 (0.485) | 0.477 (0.505) | 0.591 (0.492) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| CZP | ||||
| Mean (SD) | 0.188 (0.392) | 0.196 (0.398) | 0.0909 (0.291) | 0.184 (0.388) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| DZP | ||||
| Mean (SD) | 0.173 (0.379) | 0.151 (0.359) | 0.136 (0.347) | 0.158 (0.365) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| ESM | ||||
| Mean (SD) | 0.0558 (0.230) | 0.0702 (0.256) | 0.114 (0.321) | 0.0684 (0.253) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| FBM | ||||
| Mean (SD) | 0.00508 (0.0712) | 0.0140 (0.118) | 0.0227 (0.151) | 0.0114 (0.106) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| GBP | ||||
| Mean (SD) | 0.259 (0.439) | 0.425 (0.495) | 0.364 (0.487) | 0.357 (0.480) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| LCS | ||||
| Mean (SD) | 0.0152 (0.123) | 0.0281 (0.165) | 0.114 (0.321) | 0.0304 (0.172) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| LTG | ||||
| Mean (SD) | 0.797 (0.403) | 0.747 (0.435) | 0.795 (0.408) | 0.770 (0.421) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| LVT | ||||
| Mean (SD) | 0.249 (0.433) | 0.463 (0.500) | 0.727 (0.451) | 0.405 (0.491) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| LZP | ||||
| Mean (SD) | 0.00508 (0.0712) | 0.0211 (0.144) | 0.00 (0.00) | 0.0133 (0.115) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| MDL | ||||
| Mean (SD) | 0.00508 (0.0712) | 0.00 (0.00) | 0.0227 (0.151) | 0.00380 (0.0616) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| OCBZ | ||||
| Mean (SD) | 0.0508 (0.220) | 0.133 (0.341) | 0.159 (0.370) | 0.105 (0.306) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| PB | ||||
| Mean (SD) | 0.381 (0.487) | 0.512 (0.501) | 0.614 (0.493) | 0.471 (0.500) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| PGB | ||||
| Mean (SD) | 0.0508 (0.220) | 0.116 (0.321) | 0.250 (0.438) | 0.103 (0.304) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| PHT | ||||
| Mean (SD) | 0.635 (0.483) | 0.705 (0.457) | 0.795 (0.408) | 0.686 (0.464) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| PMD | ||||
| Mean (SD) | 0.0660 (0.249) | 0.232 (0.423) | 0.341 (0.479) | 0.179 (0.383) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| RUF | ||||
| Mean (SD) | 0.00 (0.00) | 0.00351 (0.0592) | 0.00 (0.00) | 0.00190 (0.0436) |
| Median [Min, Max] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| SUL | ||||
| Mean (SD) | 0.0152 (0.123) | 0.0386 (0.193) | 0.0227 (0.151) | 0.0285 (0.167) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| TGB | ||||
| Mean (SD) | 0.0355 (0.186) | 0.0702 (0.256) | 0.0909 (0.291) | 0.0589 (0.236) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| TPM | ||||
| Mean (SD) | 0.320 (0.468) | 0.477 (0.500) | 0.477 (0.505) | 0.418 (0.494) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| VGB | ||||
| Mean (SD) | 0.589 (0.493) | 0.495 (0.501) | 0.318 (0.471) | 0.515 (0.500) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| VPA | ||||
| Mean (SD) | 0.792 (0.407) | 0.804 (0.398) | 0.750 (0.438) | 0.795 (0.404) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| ZNS | ||||
| Mean (SD) | 0.0355 (0.186) | 0.0772 (0.267) | 0.136 (0.347) | 0.0665 (0.249) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 6 (3.0%) | 7 (2.4%) | 1 (2.2%) | 14 (2.6%) |
| psych_subjective_improve | ||||
| Mean (SD) | 0.458 (0.500) | 0.408 (0.493) | 0.174 (0.388) | 0.412 (0.493) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 61 (30.0%) | 86 (29.5%) | 22 (48.9%) | 169 (31.3%) |
| VIQ_preop | ||||
| Mean (SD) | 83.5 (25.7) | 81.3 (33.7) | 69.3 (46.6) | 81.2 (32.3) |
| Median [Min, Max] | 87.5 [0.00, 126] | 91.0 [0.00, 142] | 86.0 [0.00, 130] | 89.0 [0.00, 142] |
| Missing | 15 (7.4%) | 28 (9.6%) | 7 (15.6%) | 50 (9.3%) |
| PIQ_preop | ||||
| Mean (SD) | 95.4 (16.4) | 95.5 (16.0) | 103 (16.1) | 95.9 (16.2) |
| Median [Min, Max] | 96.0 [57.0, 137] | 95.0 [0.00, 137] | 107 [78.0, 139] | 96.0 [0.00, 139] |
| Missing | 29 (14.3%) | 64 (21.9%) | 19 (42.2%) | 112 (20.7%) |
| VerbalMem_preop | ||||
| Mean (SD) | 2.44 (0.840) | 2.34 (0.800) | 2.13 (0.869) | 2.37 (0.823) |
| Median [Min, Max] | 3.00 [0.00, 4.00] | 3.00 [0.00, 4.00] | 2.00 [1.00, 4.00] | 3.00 [0.00, 4.00] |
| Missing | 36 (17.7%) | 83 (28.4%) | 22 (48.9%) | 141 (26.1%) |
| VisualMem_preop | ||||
| Mean (SD) | 2.82 (1.06) | 2.74 (0.816) | 2.61 (0.783) | 2.77 (0.923) |
| Median [Min, Max] | 3.00 [0.00, 5.00] | 3.00 [0.00, 5.00] | 3.00 [1.00, 4.00] | 3.00 [0.00, 5.00] |
| Missing | 38 (18.7%) | 84 (28.8%) | 22 (48.9%) | 144 (26.7%) |
| VIQ_3month | ||||
| Mean (SD) | 81.6 (31.0) | 61.0 (47.6) | 23.3 (40.4) | 65.9 (41.7) |
| Median [Min, Max] | 87.0 [0.00, 113] | 86.5 [0.00, 99.0] | 0.00 [0.00, 70.0] | 81.0 [0.00, 113] |
| Missing | 193 (95.1%) | 286 (97.9%) | 42 (93.3%) | 521 (96.5%) |
| PIQ_3month | ||||
| Mean (SD) | 96.9 (38.1) | 59.0 (45.8) | 36.7 (63.5) | 75.4 (48.5) |
| Median [Min, Max] | 103 [0.00, 134] | 86.5 [0.00, 92.0] | 0.00 [0.00, 110] | 91.0 [0.00, 134] |
| Missing | 193 (95.1%) | 286 (97.9%) | 42 (93.3%) | 521 (96.5%) |
| VerbalMem_3month | ||||
| Mean (SD) | 15.8 (21.5) | 20.3 (21.8) | 0.00 (0.00) | 15.5 (20.2) |
| Median [Min, Max] | 3.00 [0.00, 46.0] | 18.5 [0.00, 49.0] | 0.00 [0.00, 0.00] | 3.00 [0.00, 49.0] |
| Missing | 197 (97.0%) | 286 (97.9%) | 43 (95.6%) | 526 (97.4%) |
| VisualMem_3month | ||||
| Mean (SD) | 14.3 (19.3) | 19.2 (20.3) | 0.00 (0.00) | 14.4 (18.6) |
| Median [Min, Max] | 3.00 [0.00, 43.0] | 17.5 [0.00, 44.0] | 0.00 [0.00, 0.00] | 3.00 [0.00, 44.0] |
| Missing | 197 (97.0%) | 286 (97.9%) | 43 (95.6%) | 526 (97.4%) |
| VerbalDec_3month | ||||
| Mean (SD) | 0.00 (0.00) | 0.333 (0.577) | 0.00 (0.00) | 0.143 (0.378) |
| Median [Min, Max] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] |
| Missing | 201 (99.0%) | 289 (99.0%) | 43 (95.6%) | 533 (98.7%) |
| VisualDec_3month | ||||
| Mean (SD) | 0.00 (0.00) | 0.333 (0.577) | 0.00 (0.00) | 0.143 (0.378) |
| Median [Min, Max] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] |
| Missing | 201 (99.0%) | 289 (99.0%) | 43 (95.6%) | 533 (98.7%) |
| VIQ_1to2year | ||||
| Mean (SD) | 92.0 (12.5) | 94.3 (15.3) | 106 (14.3) | 93.9 (14.4) |
| Median [Min, Max] | 91.0 [61.0, 125] | 94.0 [0.00, 137] | 104 [81.0, 138] | 94.0 [0.00, 138] |
| Missing | 82 (40.4%) | 121 (41.4%) | 30 (66.7%) | 233 (43.1%) |
| PIQ_1to2year | ||||
| Mean (SD) | 99.7 (16.6) | 98.7 (22.1) | 104 (16.1) | 99.4 (19.8) |
| Median [Min, Max] | 100 [60.0, 149] | 100 [0.00, 140] | 104 [74.0, 129] | 100 [0.00, 149] |
| Missing | 83 (40.9%) | 125 (42.8%) | 30 (66.7%) | 238 (44.1%) |
| VerbalMem_1to2year | ||||
| Mean (SD) | 42.8 (10.6) | 40.9 (10.5) | 35.0 (10.3) | 41.4 (10.6) |
| Median [Min, Max] | 44.0 [3.00, 64.0] | 42.0 [3.00, 68.0] | 34.0 [19.0, 51.0] | 42.0 [3.00, 68.0] |
| Missing | 77 (37.9%) | 115 (39.4%) | 30 (66.7%) | 222 (41.1%) |
| VisualMem_1to2year | ||||
| Mean (SD) | 33.2 (10.3) | 30.6 (9.89) | 24.7 (5.23) | 31.3 (10.1) |
| Median [Min, Max] | 34.0 [2.00, 89.0] | 31.5 [3.00, 99.0] | 25.0 [14.0, 35.0] | 32.0 [2.00, 99.0] |
| Missing | 84 (41.4%) | 120 (41.1%) | 30 (66.7%) | 234 (43.3%) |
| VerbalDec_1to2year | ||||
| Mean (SD) | 0.302 (0.461) | 0.281 (0.451) | 0.467 (0.516) | 0.298 (0.458) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 77 (37.9%) | 114 (39.0%) | 30 (66.7%) | 221 (40.9%) |
| VisualDec_1to2year | ||||
| Mean (SD) | 0.190 (0.394) | 0.213 (0.411) | 0.267 (0.458) | 0.207 (0.406) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 77 (37.9%) | 114 (39.0%) | 30 (66.7%) | 221 (40.9%) |
| VIQ_3to5year | ||||
| Mean (SD) | 78.0 (41.6) | 73.3 (38.6) | NA (NA) | 74.9 (38.4) |
| Median [Min, Max] | 88.0 [0.00, 124] | 79.0 [0.00, 109] | NA [NA, NA] | 87.0 [0.00, 124] |
| Missing | 197 (97.0%) | 281 (96.2%) | 45 (100%) | 523 (96.9%) |
| PIQ_3to5year | ||||
| Mean (SD) | 88.4 (50.4) | 77.4 (47.2) | NA (NA) | 81.4 (46.7) |
| Median [Min, Max] | 104 [0.00, 126] | 99.0 [0.00, 132] | NA [NA, NA] | 101 [0.00, 132] |
| Missing | 198 (97.5%) | 283 (96.9%) | 45 (100%) | 526 (97.4%) |
| VerbalMem_3to5year | ||||
| Mean (SD) | 2.00 (1.73) | 15.0 (18.5) | NA (NA) | 9.43 (14.9) |
| Median [Min, Max] | 3.00 [0.00, 3.00] | 11.0 [0.00, 38.0] | NA [NA, NA] | 3.00 [0.00, 38.0] |
| Missing | 200 (98.5%) | 288 (98.6%) | 45 (100%) | 533 (98.7%) |
| VisualMem_3to5year | ||||
| Mean (SD) | 2.33 (2.08) | 11.0 (15.1) | NA (NA) | 7.29 (11.7) |
| Median [Min, Max] | 3.00 [0.00, 4.00] | 6.00 [0.00, 32.0] | NA [NA, NA] | 3.00 [0.00, 32.0] |
| Missing | 200 (98.5%) | 288 (98.6%) | 45 (100%) | 533 (98.7%) |
| VerbalDec_3to5year | ||||
| Mean (SD) | 0.00 (0.00) | 0.250 (0.500) | NA (NA) | 0.167 (0.408) |
| Median [Min, Max] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] | NA [NA, NA] | 0.00 [0.00, 1.00] |
| Missing | 201 (99.0%) | 288 (98.6%) | 45 (100%) | 534 (98.9%) |
| VisualDec_3to5year | ||||
| Mean (SD) | 0.00 (0.00) | 0.250 (0.500) | NA (NA) | 0.167 (0.408) |
| Median [Min, Max] | 0.00 [0.00, 0.00] | 0.00 [0.00, 1.00] | NA [NA, NA] | 0.00 [0.00, 1.00] |
| Missing | 201 (99.0%) | 288 (98.6%) | 45 (100%) | 534 (98.9%) |
| VIQ_10year | ||||
| Mean (SD) | 75.9 (34.0) | 81.1 (48.8) | NA (NA) | 78.8 (41.7) |
| Median [Min, Max] | 90.0 [0.00, 97.0] | 95.0 [0.00, 136] | NA [NA, NA] | 91.5 [0.00, 136] |
| Missing | 196 (96.6%) | 283 (96.9%) | 45 (100%) | 524 (97.0%) |
| PIQ_10year | ||||
| Mean (SD) | 80.3 (39.9) | 69.1 (48.6) | NA (NA) | 74.3 (43.3) |
| Median [Min, Max] | 98.0 [0.00, 102] | 83.0 [0.00, 111] | NA [NA, NA] | 97.0 [0.00, 111] |
| Missing | 197 (97.0%) | 285 (97.6%) | 45 (100%) | 527 (97.6%) |
| VerbalMem_10year | ||||
| Mean (SD) | 22.0 (31.1) | 12.3 (23.2) | NA (NA) | 15.5 (23.3) |
| Median [Min, Max] | 22.0 [0.00, 44.0] | 1.00 [0.00, 47.0] | NA [NA, NA] | 1.00 [0.00, 47.0] |
| Missing | 201 (99.0%) | 288 (98.6%) | 45 (100%) | 534 (98.9%) |
| VisualMem_10year | ||||
| Mean (SD) | 21.5 (30.4) | 12.8 (23.5) | NA (NA) | 15.7 (23.2) |
| Median [Min, Max] | 21.5 [0.00, 43.0] | 1.50 [0.00, 48.0] | NA [NA, NA] | 1.50 [0.00, 48.0] |
| Missing | 201 (99.0%) | 288 (98.6%) | 45 (100%) | 534 (98.9%) |
| VerbalDec_10year | ||||
| Mean (SD) | 0.00 (NA) | 0.00 (0.00) | NA (NA) | 0.00 (0.00) |
| Median [Min, Max] | 0.00 [0.00, 0.00] | 0.00 [0.00, 0.00] | NA [NA, NA] | 0.00 [0.00, 0.00] |
| Missing | 202 (99.5%) | 289 (99.0%) | 45 (100%) | 536 (99.3%) |
| VisualDec_10year | ||||
| Mean (SD) | 0.00 (NA) | 0.00 (0.00) | NA (NA) | 0.00 (0.00) |
| Median [Min, Max] | 0.00 [0.00, 0.00] | 0.00 [0.00, 0.00] | NA [NA, NA] | 0.00 [0.00, 0.00] |
| Missing | 202 (99.5%) | 289 (99.0%) | 45 (100%) | 536 (99.3%) |
| psych_verbal_learning_pre | ||||
| Mean (SD) | 45.5 (9.94) | 43.5 (9.68) | 37.6 (10.5) | 43.7 (10.0) |
| Median [Min, Max] | 46.0 [20.0, 69.0] | 44.0 [18.0, 69.0] | 39.0 [10.0, 62.0] | 44.0 [10.0, 69.0] |
| Missing | 6 (3.0%) | 3 (1.0%) | 0 (0%) | 9 (1.7%) |
| psych_verbal_recall_pre | ||||
| Mean (SD) | 9.01 (3.04) | 8.33 (3.19) | 7.11 (3.27) | 8.48 (3.18) |
| Median [Min, Max] | 9.00 [2.00, 15.0] | 8.00 [0.00, 15.0] | 7.00 [1.00, 13.0] | 9.00 [0.00, 15.0] |
| Missing | 7 (3.4%) | 3 (1.0%) | 0 (0%) | 10 (1.9%) |
| psych_visual_learning_pre | ||||
| Mean (SD) | 33.0 (9.76) | 31.8 (18.6) | 27.3 (7.83) | 31.9 (15.2) |
| Median [Min, Max] | 35.0 [0.00, 45.0] | 32.0 [0.00, 300] | 28.5 [12.0, 42.0] | 33.0 [0.00, 300] |
| Missing | 14 (6.9%) | 9 (3.1%) | 1 (2.2%) | 24 (4.4%) |
| psych_visual_recall_pre | ||||
| Mean (SD) | 6.98 (4.16) | 6.54 (4.67) | 5.07 (2.65) | 6.58 (4.37) |
| Median [Min, Max] | 8.00 [0.00, 51.0] | 7.00 [0.00, 72.0] | 5.00 [0.00, 9.00] | 7.00 [0.00, 72.0] |
| Missing | 14 (6.9%) | 9 (3.1%) | 1 (2.2%) | 24 (4.4%) |
| psych_verbal_learning_3m | ||||
| Mean (SD) | 42.1 (11.1) | 39.5 (11.7) | 30.1 (13.2) | 39.7 (12.0) |
| Median [Min, Max] | 43.0 [0.00, 66.0] | 40.0 [0.00, 67.0] | 28.5 [0.00, 53.0] | 40.5 [0.00, 67.0] |
| Missing | 29 (14.3%) | 36 (12.3%) | 9 (20.0%) | 74 (13.7%) |
| psych_verbal_recall_3m | ||||
| Mean (SD) | 7.87 (3.29) | 7.11 (3.60) | 4.33 (3.09) | 7.18 (3.56) |
| Median [Min, Max] | 8.00 [0.00, 15.0] | 7.00 [0.00, 15.0] | 4.00 [0.00, 12.0] | 7.00 [0.00, 15.0] |
| Missing | 29 (14.3%) | 36 (12.3%) | 9 (20.0%) | 74 (13.7%) |
| psych_visual_learning_3m | ||||
| Mean (SD) | 33.6 (10.1) | 30.1 (9.79) | 23.0 (8.40) | 30.8 (10.2) |
| Median [Min, Max] | 35.0 [0.00, 97.0] | 31.0 [0.00, 45.0] | 22.0 [0.00, 38.0] | 31.0 [0.00, 97.0] |
| Missing | 38 (18.7%) | 44 (15.1%) | 9 (20.0%) | 91 (16.9%) |
| psych_visual_recall_3m | ||||
| Mean (SD) | 7.37 (7.77) | 6.12 (2.72) | 4.42 (2.73) | 6.44 (5.24) |
| Median [Min, Max] | 8.00 [0.00, 97.0] | 7.00 [0.00, 9.00] | 4.00 [0.00, 9.00] | 7.00 [0.00, 97.0] |
| Missing | 38 (18.7%) | 43 (14.7%) | 9 (20.0%) | 90 (16.7%) |
| psych_verbal_learning_1y | ||||
| Mean (SD) | 44.1 (9.67) | 41.0 (11.2) | 33.8 (11.4) | 41.6 (11.0) |
| Median [Min, Max] | 45.0 [21.0, 65.0] | 42.0 [3.00, 71.0] | 34.0 [11.0, 52.0] | 43.0 [3.00, 71.0] |
| Missing | 17 (8.4%) | 21 (7.2%) | 3 (6.7%) | 41 (7.6%) |
| psych_verbal_recall_1y | ||||
| Mean (SD) | 8.52 (3.26) | 7.81 (3.50) | 6.23 (3.45) | 7.94 (3.46) |
| Median [Min, Max] | 8.00 [0.00, 15.0] | 8.00 [0.00, 15.0] | 6.00 [0.00, 12.0] | 8.00 [0.00, 15.0] |
| Missing | 17 (8.4%) | 21 (7.2%) | 2 (4.4%) | 40 (7.4%) |
| psych_visual_learning_1y | ||||
| Mean (SD) | 33.5 (8.84) | 30.2 (8.00) | 25.6 (7.37) | 31.0 (8.56) |
| Median [Min, Max] | 34.0 [4.00, 89.0] | 31.0 [9.00, 45.0] | 25.5 [10.0, 41.0] | 31.0 [4.00, 89.0] |
| Missing | 25 (12.3%) | 28 (9.6%) | 3 (6.7%) | 56 (10.4%) |
| psych_visual_recall_1y | ||||
| Mean (SD) | 6.75 (2.58) | 6.52 (3.69) | 4.71 (2.63) | 6.45 (3.28) |
| Median [Min, Max] | 8.00 [0.00, 13.0] | 7.00 [0.00, 45.0] | 4.50 [0.00, 9.00] | 7.00 [0.00, 45.0] |
| Missing | 26 (12.8%) | 28 (9.6%) | 3 (6.7%) | 57 (10.6%) |
| change_verbal_learning | ||||
| Mean (SD) | -1.75 (8.60) | -2.32 (10.6) | -4.14 (12.4) | -2.27 (10.1) |
| Median [Min, Max] | -3.00 [-25.0, 21.0] | -1.00 [-43.0, 26.0] | -6.00 [-27.0, 36.0] | -2.00 [-43.0, 36.0] |
| Missing | 21 (10.3%) | 24 (8.2%) | 3 (6.7%) | 48 (8.9%) |
| improve_VeL | ||||
| Mean (SD) | 0.0989 (0.299) | 0.116 (0.320) | 0.119 (0.328) | 0.110 (0.313) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 21 (10.3%) | 24 (8.2%) | 3 (6.7%) | 48 (8.9%) |
| decline_VeL | ||||
| Mean (SD) | 0.577 (0.495) | 0.541 (0.499) | 0.619 (0.492) | 0.561 (0.497) |
| Median [Min, Max] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 1.00 [0.00, 1.00] |
| Missing | 21 (10.3%) | 24 (8.2%) | 3 (6.7%) | 48 (8.9%) |
| change_verbal_recall | ||||
| Mean (SD) | -0.530 (3.42) | -0.496 (3.23) | -0.907 (3.48) | -0.545 (3.32) |
| Median [Min, Max] | 0.00 [-12.0, 8.00] | 0.00 [-9.00, 10.0] | -1.00 [-11.0, 9.00] | 0.00 [-12.0, 10.0] |
| Missing | 22 (10.8%) | 24 (8.2%) | 2 (4.4%) | 48 (8.9%) |
| improve_VeR | ||||
| Mean (SD) | 0.188 (0.392) | 0.160 (0.368) | 0.140 (0.351) | 0.169 (0.375) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 22 (10.8%) | 24 (8.2%) | 2 (4.4%) | 48 (8.9%) |
| decline_VeR | ||||
| Mean (SD) | 0.492 (0.501) | 0.470 (0.500) | 0.512 (0.506) | 0.482 (0.500) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 1.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 22 (10.8%) | 24 (8.2%) | 2 (4.4%) | 48 (8.9%) |
| change_visual_learning | ||||
| Mean (SD) | 0.366 (9.40) | 0.378 (8.41) | 2.31 (7.97) | 0.539 (8.75) |
| Median [Min, Max] | 0.00 [-23.0, 62.0] | 1.00 [-25.0, 42.0] | 2.00 [-15.0, 29.0] | 1.00 [-25.0, 62.0] |
| Missing | 50 (24.6%) | 62 (21.2%) | 9 (20.0%) | 121 (22.4%) |
| improve_ViL | ||||
| Mean (SD) | 0.0719 (0.259) | 0.0870 (0.282) | 0.0833 (0.280) | 0.0811 (0.273) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 50 (24.6%) | 62 (21.2%) | 9 (20.0%) | 121 (22.4%) |
| decline_ViL | ||||
| Mean (SD) | 0.451 (0.499) | 0.413 (0.493) | 0.306 (0.467) | 0.418 (0.494) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 50 (24.6%) | 62 (21.2%) | 9 (20.0%) | 121 (22.4%) |
| change_visual_recall | ||||
| Mean (SD) | -0.118 (3.17) | 0.554 (4.00) | 0.194 (2.01) | 0.279 (3.59) |
| Median [Min, Max] | 0.00 [-27.0, 7.00] | 0.00 [-8.00, 43.0] | 1.00 [-5.00, 4.00] | 0.00 [-27.0, 43.0] |
| Missing | 51 (25.1%) | 61 (20.9%) | 9 (20.0%) | 121 (22.4%) |
| improve_ViR | ||||
| Mean (SD) | 0.0724 (0.260) | 0.117 (0.322) | 0.0556 (0.232) | 0.0955 (0.294) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 51 (25.1%) | 61 (20.9%) | 9 (20.0%) | 121 (22.4%) |
| decline_ViR | ||||
| Mean (SD) | 0.309 (0.464) | 0.303 (0.461) | 0.306 (0.467) | 0.305 (0.461) |
| Median [Min, Max] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] |
| Missing | 51 (25.1%) | 61 (20.9%) | 9 (20.0%) | 121 (22.4%) |
drop <- c("AZM","BRI", "CBZ", "CLB", "CZP", "DZP", "ESM", "FBM", "GBP", "LCS", "LTG", "LVT", "LZP", "MDL", "OCBZ", "PB", "PGB", "PHT", "PMD", "RET", "RUF", "SUL", "TGB", "TPM", "VGB", "VPA", "ZNS")
data = data[,!(names(data) %in% drop)]
x <- which(names(data) == "age_cat") # name of grouping variable
y <- which(names(data) == 'depression_post_surgery'
| names(data) == 'psychosis_post'
| names(data) == 'psychiatric_post_any'
| names(data) == 'new_depression'
| names(data) == 'new_psychosis'
| names(data) == 'new_psychiatric'
| names(data) == 'died'
| names(data) == 'aeds'
| names(data) == 'relapse'
| names(data) == 'relapse_year'
| names(data) == 'mri_normal'
| names(data) == 'psych_subjective_improve'
| names(data) == 'VIQ_preop'
| names(data) == 'PIQ_preop'
| names(data) == 'VerbalMem_preop'
| names(data) == 'VisualMem_preop'
| names(data) == 'VerbalMem_10year'
| names(data) == 'VisualMem_10year'
| names(data) == 'VerbalDec_10year'
| names(data) == 'VisualDec_10year'
| names(data) == 'psych_verbal_learning_pre'
| names(data) == 'psych_verbal_recall_pre'
| names(data) == 'psych_visual_learning_pre'
| names(data) == 'psych_visual_recall_pre'
| names(data) == 'psych_verbal_learning_3m'
| names(data) == 'psych_verbal_recall_3m'
| names(data) == 'psych_visual_learning_3m'
| names(data) == 'psych_visual_recall_3m'
| names(data) == 'psych_verbal_learning_1y'
| names(data) == 'psych_verbal_recall_1y'
| names(data) == 'psych_visual_learning_1y'
| names(data) == 'psych_visual_recall_1y'
| names(data) == 'improve_VeL'
| names(data) == 'decline_VeL'
| names(data) == 'improve_VeR'
| names(data) == 'decline_VeR'
| names(data) == 'improve_ViL'
| names(data) == 'decline_ViL'
| names(data) == 'improve_ViR'
| names(data) == 'decline_ViR'
)
method1 <- "kruskal.test" # one of "anova" or "kruskal.test"
method2 <- "t.test" # one of "wilcox.test" or "t.test"
my_comparisons <- list(c("1", "2"), c("1", "3"), c("2", "3")) # comparisons for post-hoc tests
for (i in y) {
for (j in x) {
p <- ggboxplot(data,
x = colnames(data[j]), y = colnames(data[i]),
color = colnames(data[j]),
legend = "none",
palette = "npg",
add = "jitter"
)
print(
p + stat_compare_means(aes(label = paste0(..method.., ", p-value = ", ..p.format..)),
method = method1, label.y = max(data[, i], na.rm = TRUE)
)
+ stat_compare_means(comparisons = my_comparisons, method = method2, label = "p.format") # remove if p-value of ANOVA or Kruskal-Wallis test >= alpha
)
}
}
library(broom)
df2 <- data %>% gather(key, value, -age_cat) %>%
group_by(key) %>%
do(tidy(kruskal.test(x= .$value, g= .$age_cat)))
kableExtra::kbl(df2, digits = round(3)) %>%
kableExtra::kable_paper(bootstrap_options = "striped", full_width = F, )
| key | statistic | p.value | parameter | method |
|---|---|---|---|---|
| aeds | 9.082 | 0.011 | 2 | Kruskal-Wallis rank sum test |
| age_at_surgery | 424.832 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| age_onset | 3.404 | 0.182 | 2 | Kruskal-Wallis rank sum test |
| BIL8 | 8.599 | 0.014 | 2 | Kruskal-Wallis rank sum test |
| change_verbal_learning | 0.384 | 0.825 | 2 | Kruskal-Wallis rank sum test |
| change_verbal_recall | 0.474 | 0.789 | 2 | Kruskal-Wallis rank sum test |
| change_visual_learning | 5.193 | 0.075 | 2 | Kruskal-Wallis rank sum test |
| change_visual_recall | 1.282 | 0.527 | 2 | Kruskal-Wallis rank sum test |
| childconvul | 14.942 | 0.001 | 2 | Kruskal-Wallis rank sum test |
| decline_VeL | 1.193 | 0.551 | 2 | Kruskal-Wallis rank sum test |
| decline_VeR | 0.369 | 0.831 | 2 | Kruskal-Wallis rank sum test |
| decline_ViL | 2.573 | 0.276 | 2 | Kruskal-Wallis rank sum test |
| decline_ViR | 0.016 | 0.992 | 2 | Kruskal-Wallis rank sum test |
| depression_post_surgery | 0.573 | 0.751 | 2 | Kruskal-Wallis rank sum test |
| depression_pre | 0.528 | 0.768 | 2 | Kruskal-Wallis rank sum test |
| died | 3.182 | 0.204 | 2 | Kruskal-Wallis rank sum test |
| duration | 51.659 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| family_history | 0.721 | 0.697 | 2 | Kruskal-Wallis rank sum test |
| gtcs | 0.803 | 0.669 | 2 | Kruskal-Wallis rank sum test |
| Hand | 0.570 | 0.752 | 2 | Kruskal-Wallis rank sum test |
| id | 20.593 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| improve_VeL | 0.352 | 0.839 | 2 | Kruskal-Wallis rank sum test |
| improve_VeR | 0.862 | 0.650 | 2 | Kruskal-Wallis rank sum test |
| improve_ViL | 0.281 | 0.869 | 2 | Kruskal-Wallis rank sum test |
| improve_ViR | 2.823 | 0.244 | 2 | Kruskal-Wallis rank sum test |
| L8 | 22.725 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| last_follow | 4.588 | 0.101 | 2 | Kruskal-Wallis rank sum test |
| mri_normal | 1.282 | 0.527 | 2 | Kruskal-Wallis rank sum test |
| neuro_insult | 11.115 | 0.004 | 2 | Kruskal-Wallis rank sum test |
| new_depression | 6.297 | 0.043 | 2 | Kruskal-Wallis rank sum test |
| new_psychiatric | 1.957 | 0.376 | 2 | Kruskal-Wallis rank sum test |
| new_psychosis | 5.021 | 0.081 | 2 | Kruskal-Wallis rank sum test |
| op_side | 4.463 | 0.107 | 2 | Kruskal-Wallis rank sum test |
| OP_Type | 1.164 | 0.559 | 2 | Kruskal-Wallis rank sum test |
| pathology | 3.682 | 0.159 | 2 | Kruskal-Wallis rank sum test |
| PIQ_10year | 0.743 | 0.389 | 1 | Kruskal-Wallis rank sum test |
| PIQ_1to2year | 0.932 | 0.627 | 2 | Kruskal-Wallis rank sum test |
| PIQ_3month | 4.156 | 0.125 | 2 | Kruskal-Wallis rank sum test |
| PIQ_3to5year | 0.758 | 0.384 | 1 | Kruskal-Wallis rank sum test |
| PIQ_preop | 3.295 | 0.193 | 2 | Kruskal-Wallis rank sum test |
| psych_subjective_improve | 6.604 | 0.037 | 2 | Kruskal-Wallis rank sum test |
| psych_verbal_learning_1y | 26.941 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| psych_verbal_learning_3m | 13.927 | 0.001 | 2 | Kruskal-Wallis rank sum test |
| psych_verbal_learning_pre | 20.099 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| psych_verbal_recall_1y | 0.650 | 0.723 | 2 | Kruskal-Wallis rank sum test |
| psych_verbal_recall_3m | 4.300 | 0.116 | 2 | Kruskal-Wallis rank sum test |
| psych_verbal_recall_pre | 1.633 | 0.442 | 2 | Kruskal-Wallis rank sum test |
| psych_visual_learning_1y | 36.684 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| psych_visual_learning_3m | 37.536 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| psych_visual_learning_pre | 25.630 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| psych_visual_recall_1y | 21.199 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| psych_visual_recall_3m | 19.555 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| psych_visual_recall_pre | 17.939 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| psychiatric_post_any | 3.835 | 0.147 | 2 | Kruskal-Wallis rank sum test |
| psychiatric_pre_any | 3.841 | 0.147 | 2 | Kruskal-Wallis rank sum test |
| psychosis_post | 2.604 | 0.272 | 2 | Kruskal-Wallis rank sum test |
| psychosis_pre | 4.100 | 0.129 | 2 | Kruskal-Wallis rank sum test |
| R8 | 1.346 | 0.510 | 2 | Kruskal-Wallis rank sum test |
| relapse | 3.216 | 0.200 | 2 | Kruskal-Wallis rank sum test |
| relapse_year | 0.823 | 0.663 | 2 | Kruskal-Wallis rank sum test |
| Several_OPs | 2.197 | 0.333 | 2 | Kruskal-Wallis rank sum test |
| sex | 4.251 | 0.119 | 2 | Kruskal-Wallis rank sum test |
| status_epilepticus | 1.333 | 0.513 | 2 | Kruskal-Wallis rank sum test |
| VerbalDec_10year | NaN | NaN | 1 | Kruskal-Wallis rank sum test |
| VerbalDec_1to2year | 2.290 | 0.318 | 2 | Kruskal-Wallis rank sum test |
| VerbalDec_3month | 1.333 | 0.513 | 2 | Kruskal-Wallis rank sum test |
| VerbalDec_3to5year | 0.500 | 0.480 | 1 | Kruskal-Wallis rank sum test |
| VerbalMem_10year | 0.000 | 1.000 | 1 | Kruskal-Wallis rank sum test |
| VerbalMem_1to2year | 9.794 | 0.007 | 2 | Kruskal-Wallis rank sum test |
| VerbalMem_3month | 2.855 | 0.240 | 2 | Kruskal-Wallis rank sum test |
| VerbalMem_3to5year | 0.137 | 0.711 | 1 | Kruskal-Wallis rank sum test |
| VerbalMem_preop | 4.992 | 0.082 | 2 | Kruskal-Wallis rank sum test |
| VIQ_10year | 1.910 | 0.167 | 1 | Kruskal-Wallis rank sum test |
| VIQ_1to2year | 8.070 | 0.018 | 2 | Kruskal-Wallis rank sum test |
| VIQ_3month | 3.410 | 0.182 | 2 | Kruskal-Wallis rank sum test |
| VIQ_3to5year | 0.825 | 0.364 | 1 | Kruskal-Wallis rank sum test |
| VIQ_preop | 12.537 | 0.002 | 2 | Kruskal-Wallis rank sum test |
| VisualDec_10year | NaN | NaN | 1 | Kruskal-Wallis rank sum test |
| VisualDec_1to2year | 0.579 | 0.749 | 2 | Kruskal-Wallis rank sum test |
| VisualDec_3month | 1.333 | 0.513 | 2 | Kruskal-Wallis rank sum test |
| VisualDec_3to5year | 0.500 | 0.480 | 1 | Kruskal-Wallis rank sum test |
| VisualMem_10year | 0.000 | 1.000 | 1 | Kruskal-Wallis rank sum test |
| VisualMem_1to2year | 20.678 | 0.000 | 2 | Kruskal-Wallis rank sum test |
| VisualMem_3month | 2.855 | 0.240 | 2 | Kruskal-Wallis rank sum test |
| VisualMem_3to5year | 0.538 | 0.463 | 1 | Kruskal-Wallis rank sum test |
| VisualMem_preop | 5.423 | 0.066 | 2 | Kruskal-Wallis rank sum test |
#tabUnmatched <- CreateTableOne(vars = listvars, strata = "data_psych_match.age_cat", data = match, test = TRUEtestApprox = aov )
#tabUnmatched2 <- print(tabUnmatched, smd = TRUE)
#addmargins(table(ExtractSmd(tabUnmatched) > 0.1))
reg1 <- glm(data_psych_match$data_psych_match.improve_VeL ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match)
summary(reg1)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.improve_VeL ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.14279 -0.11816 -0.11816 -0.09353 0.90647
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.06890 0.04062 1.696
## data_psych_match$data_psych_match.age_cat 0.02463 0.02232 1.103
## Pr(>|t|)
## (Intercept) 0.0904 .
## data_psych_match$data_psych_match.age_cat 0.2704
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.09891121)
##
## Null deviance: 52.444 on 530 degrees of freedom
## Residual deviance: 52.324 on 529 degrees of freedom
## AIC: 282.42
##
## Number of Fisher Scoring iterations: 2
reg2 <- glm(data_psych_match$data_psych_match.improve_VeR ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match)
summary(reg2)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.improve_VeR ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.1883 -0.1883 -0.1619 -0.1619 0.8645
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.21471 0.04850 4.427
## data_psych_match$data_psych_match.age_cat -0.02639 0.02666 -0.990
## Pr(>|t|)
## (Intercept) 1.16e-05 ***
## data_psych_match$data_psych_match.age_cat 0.323
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1410351)
##
## Null deviance: 74.746 on 530 degrees of freedom
## Residual deviance: 74.608 on 529 degrees of freedom
## AIC: 470.81
##
## Number of Fisher Scoring iterations: 2
reg3 <- glm(data_psych_match$data_psych_match.improve_ViL ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match)
summary(reg3)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.improve_ViL ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.16024 -0.11619 -0.11619 -0.07214 0.92786
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.02808 0.03927 0.715
## data_psych_match$data_psych_match.age_cat 0.04405 0.02158 2.041
## Pr(>|t|)
## (Intercept) 0.4749
## data_psych_match$data_psych_match.age_cat 0.0418 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.09247262)
##
## Null deviance: 49.303 on 530 degrees of freedom
## Residual deviance: 48.918 on 529 degrees of freedom
## AIC: 246.68
##
## Number of Fisher Scoring iterations: 2
reg4<- glm(data_psych_match$data_psych_match.improve_ViR~ data_psych_match$data_psych_match.age_cat, data = data_psych_match)
summary(reg4)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.improve_ViR ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.1724 -0.1262 -0.1262 -0.0800 0.9200
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.03378 0.04080 0.828
## data_psych_match$data_psych_match.age_cat 0.04622 0.02242 2.061
## Pr(>|t|)
## (Intercept) 0.4081
## data_psych_match$data_psych_match.age_cat 0.0397 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.09980382)
##
## Null deviance: 53.220 on 530 degrees of freedom
## Residual deviance: 52.796 on 529 degrees of freedom
## AIC: 287.19
##
## Number of Fisher Scoring iterations: 2
reg5<- glm(data_psych_match$data_psych_match.decline_VeL ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match)
summary(reg5)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.decline_VeL ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5629 -0.5579 0.4371 0.4421 0.4471
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.567810 0.064239 8.839
## data_psych_match$data_psych_match.age_cat -0.004953 0.035305 -0.140
## Pr(>|t|)
## (Intercept) <2e-16 ***
## data_psych_match$data_psych_match.age_cat 0.888
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2474036)
##
## Null deviance: 130.88 on 530 degrees of freedom
## Residual deviance: 130.88 on 529 degrees of freedom
## AIC: 769.24
##
## Number of Fisher Scoring iterations: 2
reg6<- glm(data_psych_match$data_psych_match.decline_VeR ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match)
summary(reg6)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.decline_VeR ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.4867 -0.4817 -0.4767 0.5183 0.5233
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.47164 0.06464 7.296
## data_psych_match$data_psych_match.age_cat 0.00501 0.03553 0.141
## Pr(>|t|)
## (Intercept) 1.09e-12 ***
## data_psych_match$data_psych_match.age_cat 0.888
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2505433)
##
## Null deviance: 132.54 on 530 degrees of freedom
## Residual deviance: 132.54 on 529 degrees of freedom
## AIC: 775.94
##
## Number of Fisher Scoring iterations: 2
reg7 <- glm(data_psych_match$data_psych_match.decline_ViL ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match)
summary(reg7)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.decline_ViL ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.4659 -0.4306 -0.4306 0.5694 0.6048
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.50126 0.06418 7.810
## data_psych_match$data_psych_match.age_cat -0.03535 0.03527 -1.002
## Pr(>|t|)
## (Intercept) 3.08e-14 ***
## data_psych_match$data_psych_match.age_cat 0.317
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2469438)
##
## Null deviance: 130.88 on 530 degrees of freedom
## Residual deviance: 130.63 on 529 degrees of freedom
## AIC: 768.26
##
## Number of Fisher Scoring iterations: 2
reg8 <- glm(data_psych_match$data_psych_match.decline_ViR~ data_psych_match$data_psych_match.age_cat, data = data_psych_match)
summary(reg8)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.decline_ViR ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.3499 -0.3443 -0.3388 0.6557 0.6612
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.333270 0.061412 5.427
## data_psych_match$data_psych_match.age_cat 0.005531 0.033752 0.164
## Pr(>|t|)
## (Intercept) 8.75e-08 ***
## data_psych_match$data_psych_match.age_cat 0.87
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2261125)
##
## Null deviance: 119.62 on 530 degrees of freedom
## Residual deviance: 119.61 on 529 degrees of freedom
## AIC: 721.46
##
## Number of Fisher Scoring iterations: 2
w.out <- weightit(as.factor(data_psych_match$data_psych_match.age_cat) ~
data_psych_match.sex+
data_psych_match.childconvul+
data_psych_match.neuro_insult+
data_psych_match.status_epilepticus+
data_psych_match.family_history+
data_psych_match.pathology+
data_psych_match.mri_normal+
data_psych_match.psychiatric_pre_any+
data_psych_match.Hand+
data_psych_match.OP_Type+
data_psych_match.op_side+
data_psych_match.gtcs+
data_psych_match.duration+
data_psych_match.aeds+
data_psych_match.psych_verbal_learning_pre+
data_psych_match.psych_verbal_recall_pre+
data_psych_match.psych_visual_learning_pre+
data_psych_match.psych_visual_recall_pre+
data_psych_match.depression_pre+
data_psych_match.psychosis_pre+
data_psych_match.TPM+
data_psych_match.LVT+
data_psych_match.LTG,
data = data_psych_match,
method = "cbps", focal = "1", estimand = "ATT")
summary(w.out)
## Summary of weights
##
## - Weight ranges:
##
## Min Max
## 1 1.000 || 1.0000
## 2 0.013 |-------| 14.2950
## 3 0.000 |---------------------------| 48.2937
##
## - Units with 5 greatest weights by group:
##
## 1 3 4 5 6
## 1 1 1 1 1 1
## 273 251 112 79 20
## 2 9.6716 10.9426 12.2633 12.7028 14.295
## 508 448 440 209 185
## 3 2.9664 3.148 11.8085 17.1247 48.2937
##
## - Weight statistics:
##
## Coef of Var MAD Entropy
## 1 0.000 0.000 0.000
## 2 1.437 0.892 301.212
## 3 3.665 1.557 128.108
## overall 2.023 0.776 527.392
##
## - Effective Sample Sizes:
##
## 1 2 3
## Unweighted 197 289.000 45.000
## Weighted 197 94.487 3.184
#Check balance
library(cobalt)
bal.tab(w.out, which.treat = NA)
## Call
## weightit(formula = as.factor(data_psych_match$data_psych_match.age_cat) ~
## data_psych_match.sex + data_psych_match.childconvul + data_psych_match.neuro_insult +
## data_psych_match.status_epilepticus + data_psych_match.family_history +
## data_psych_match.pathology + data_psych_match.mri_normal +
## data_psych_match.psychiatric_pre_any + data_psych_match.Hand +
## data_psych_match.OP_Type + data_psych_match.op_side +
## data_psych_match.gtcs + data_psych_match.duration + data_psych_match.aeds +
## data_psych_match.psych_verbal_learning_pre + data_psych_match.psych_verbal_recall_pre +
## data_psych_match.psych_visual_learning_pre + data_psych_match.psych_visual_recall_pre +
## data_psych_match.depression_pre + data_psych_match.psychosis_pre +
## data_psych_match.TPM + data_psych_match.LVT + data_psych_match.LTG,
## data = data_psych_match, method = "cbps", estimand = "ATT",
## focal = "1")
##
## Balance summary across all treatment pairs
## Type Max.Diff.Adj
## data_psych_match.sex Binary 0.5274
## data_psych_match.childconvul Binary 0.4161
## data_psych_match.neuro_insult Binary 0.1777
## data_psych_match.status_epilepticus Binary 0.0601
## data_psych_match.family_history Binary 0.2307
## data_psych_match.pathology_CAV Binary 0.0104
## data_psych_match.pathology_DNT Binary 0.1017
## data_psych_match.pathology_DUAL Binary 0.0203
## data_psych_match.pathology_FCD Binary 0.0247
## data_psych_match.pathology_GL Binary 0.0254
## data_psych_match.pathology_HS Binary 0.0550
## data_psych_match.pathology_OTHER Binary 0.0781
## data_psych_match.mri_normal Binary 0.0567
## data_psych_match.psychiatric_pre_any Binary 0.2164
## data_psych_match.Hand Contin. 0.0261
## data_psych_match.OP_Type Contin. 0.1878
## data_psych_match.op_side Binary 0.2808
## data_psych_match.gtcs Binary 0.1307
## data_psych_match.duration Contin. 0.3990
## data_psych_match.aeds Contin. 0.9084
## data_psych_match.psych_verbal_learning_pre Contin. 0.6733
## data_psych_match.psych_verbal_recall_pre Contin. 0.3077
## data_psych_match.psych_visual_learning_pre Contin. 0.3835
## data_psych_match.psych_visual_recall_pre Contin. 0.1410
## data_psych_match.depression_pre Binary 0.1930
## data_psych_match.psychosis_pre Binary 0.3199
## data_psych_match.TPM Binary 0.0310
## data_psych_match.LVT Binary 0.1384
## data_psych_match.LTG Binary 0.1535
##
## Effective sample sizes
## 2 3 1
## Unadjusted 289.000 45.000 197
## Adjusted 94.487 3.184 197
#Estimate treatment effects (using jtools to get robust SEs)
#(Can also use survey package)
library(jtools)
reg10 <- glm(data_psych_match$data_psych_match.improve_VeL ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match, weights = w.out$weights, contrast=list(age_cat=contr.sum))
summary(reg10)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.improve_VeL ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match,
## weights = w.out$weights, contrasts = list(age_cat = contr.sum))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.40622 -0.11979 -0.10389 -0.03837 2.75720
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.15046 0.03975 3.785
## data_psych_match$data_psych_match.age_cat -0.03067 0.02031 -1.510
## Pr(>|t|)
## (Intercept) 0.000172 ***
## data_psych_match$data_psych_match.age_cat 0.131560
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1140487)
##
## Null deviance: 60.592 on 530 degrees of freedom
## Residual deviance: 60.332 on 529 degrees of freedom
## AIC: 596.65
##
## Number of Fisher Scoring iterations: 2
reg11 <- glm(data_psych_match$data_psych_match.improve_VeR ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match, weights = w.out$weights, contrast=list(age_cat=contr.sum))
summary(reg11)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.improve_VeR ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match,
## weights = w.out$weights, contrasts = list(age_cat = contr.sum))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.48751 -0.21084 -0.12737 -0.03542 2.63667
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.29274 0.04706 6.220
## data_psych_match$data_psych_match.age_cat -0.08190 0.02404 -3.407
## Pr(>|t|)
## (Intercept) 1.01e-09 ***
## data_psych_match$data_psych_match.age_cat 0.000707 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1598415)
##
## Null deviance: 86.411 on 530 degrees of freedom
## Residual deviance: 84.556 on 529 degrees of freedom
## AIC: 775.89
##
## Number of Fisher Scoring iterations: 2
reg12 <- glm(data_psych_match$data_psych_match.improve_ViL ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match, weights = w.out$weights, contrast=list(age_cat=contr.sum))
summary(reg12)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.improve_ViL ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match,
## weights = w.out$weights, contrasts = list(age_cat = contr.sum))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.44033 -0.10343 -0.10145 -0.03888 3.03208
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.12347 0.03838 3.217
## data_psych_match$data_psych_match.age_cat -0.02004 0.01960 -1.022
## Pr(>|t|)
## (Intercept) 0.00137 **
## data_psych_match$data_psych_match.age_cat 0.30722
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.106295)
##
## Null deviance: 56.341 on 530 degrees of freedom
## Residual deviance: 56.230 on 529 degrees of freedom
## AIC: 559.26
##
## Number of Fisher Scoring iterations: 2
reg13 <- glm(data_psych_match$data_psych_match.improve_ViR ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match, weights = w.out$weights, contrast=list(age_cat=contr.sum))
summary(reg13)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.improve_ViR ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match,
## weights = w.out$weights, contrasts = list(age_cat = contr.sum))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.78189 -0.12964 -0.12964 -0.05551 3.07790
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.138208 0.044825 3.083
## data_psych_match$data_psych_match.age_cat -0.008565 0.022895 -0.374
## Pr(>|t|)
## (Intercept) 0.00215 **
## data_psych_match$data_psych_match.age_cat 0.70848
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1449943)
##
## Null deviance: 76.722 on 530 degrees of freedom
## Residual deviance: 76.702 on 529 degrees of freedom
## AIC: 724.13
##
## Number of Fisher Scoring iterations: 2
reg14 <- glm(data_psych_match$data_psych_match.decline_VeL~ data_psych_match$data_psych_match.age_cat, data = data_psych_match, weights = w.out$weights, contrast=list(age_cat=contr.sum))
summary(reg14)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.decline_VeL ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match,
## weights = w.out$weights, contrasts = list(age_cat = contr.sum))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.4207 -0.5999 0.1721 0.4001 2.1012
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.65376 0.06786 9.634
## data_psych_match$data_psych_match.age_cat -0.05384 0.03466 -1.553
## Pr(>|t|)
## (Intercept) <2e-16 ***
## data_psych_match$data_psych_match.age_cat 0.121
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.3323326)
##
## Null deviance: 176.61 on 530 degrees of freedom
## Residual deviance: 175.80 on 529 degrees of freedom
## AIC: 1164.6
##
## Number of Fisher Scoring iterations: 2
reg15 <- glm(data_psych_match$data_psych_match.decline_VeR ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match, weights = w.out$weights, contrast=list(age_cat=contr.sum))
summary(reg15)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.decline_VeR ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match,
## weights = w.out$weights, contrasts = list(age_cat = contr.sum))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.6485 -0.5224 -0.0769 0.4776 1.9656
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.521035 0.068339 7.624
## data_psych_match$data_psych_match.age_cat 0.001325 0.034905 0.038
## Pr(>|t|)
## (Intercept) 1.15e-13 ***
## data_psych_match$data_psych_match.age_cat 0.97
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.3370134)
##
## Null deviance: 178.28 on 530 degrees of freedom
## Residual deviance: 178.28 on 529 degrees of freedom
## AIC: 1172
##
## Number of Fisher Scoring iterations: 2
reg16 <- glm(data_psych_match$data_psych_match.decline_ViR ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match, weights = w.out$weights, contrast=list(age_cat=contr.sum))
summary(reg16)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.decline_ViR ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match,
## weights = w.out$weights, contrasts = list(age_cat = contr.sum))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0149 -0.2434 -0.2355 0.4149 3.5657
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.12000 0.06430 1.866
## data_psych_match$data_psych_match.age_cat 0.12230 0.03284 3.724
## Pr(>|t|)
## (Intercept) 0.062539 .
## data_psych_match$data_psych_match.age_cat 0.000217 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.298329)
##
## Null deviance: 161.95 on 530 degrees of freedom
## Residual deviance: 157.82 on 529 degrees of freedom
## AIC: 1107.2
##
## Number of Fisher Scoring iterations: 2
reg17 <- glm(data_psych_match$data_psych_match.decline_ViL ~ data_psych_match$data_psych_match.age_cat, data = data_psych_match, weights = w.out$weights, contrast=list(age_cat=contr.sum))
summary(reg17)
##
## Call:
## glm(formula = data_psych_match$data_psych_match.decline_ViL ~
## data_psych_match$data_psych_match.age_cat, data = data_psych_match,
## weights = w.out$weights, contrasts = list(age_cat = contr.sum))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7864 -0.3822 -0.1445 0.6168 3.9494
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.35744 0.06709 5.328
## data_psych_match$data_psych_match.age_cat 0.02475 0.03427 0.722
## Pr(>|t|)
## (Intercept) 1.47e-07 ***
## data_psych_match$data_psych_match.age_cat 0.47
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.3248295)
##
## Null deviance: 172.00 on 530 degrees of freedom
## Residual deviance: 171.83 on 529 degrees of freedom
## AIC: 1152.4
##
## Number of Fisher Scoring iterations: 2
#bal.table(mnps.AOD, collapse.to = 'covariate', digits = 4)
```