January 14th 2021
\(\underbrace{P(parameters|Data)}_\text{Posterior}\propto \underbrace{P(Data|parameters)}_\text{Likelihood}\underbrace{P(parameters)}_\text{Prior}\)
For modelling puposes we consider a latent species response variable
Each latent species variable has a functional relationship with elevation:
\[{\bf s}_j = f_{\theta_j}(\text{elevation}) + {\bf\epsilon}_j\]
f is a penalised-spline function and \({\bf \theta}_j\) is a vector of parameters controlling the shape of the spline for species \(j\).
\(\epsilon_{ij} \sim N(0, \sigma_j^2)\) and is added to account for overdispersion (i.e, the data here are likely to exhibit more variation than may be capturped with the data model).
The observed species abundances are multinomial
\[(y_{i1},....,y_{iM}) \sim Multi(p_{i1},....,p_{iM}, N_i)\]
The probabilites of the multinomial distribution are estimated as a function of the latent species variable via a softmax transformation where
\[{p}_{ij} = \frac{e^{s_{ij}}}{\sum_{j=1}^M e^{s_{ij}}}\]
\(\underbrace{P(parameters|Data)}_\text{Posterior}\propto \underbrace{P(Data|parameters)}_\text{Likelihood}\underbrace{P(parameters)}_\text{Prior}\)
Consider the multivariate normal distribution for some k-dimension random vector y \[y \sim MVN(0, \Sigma)\] The matrix Sigma currently looks like this: \[\Sigma = \left[ \begin{array}{cccc} \sigma^2 & 0 & \ldots & 0 \\ 0 & \sigma^2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \sigma^2 \end{array} \right]\]
\[y \sim MVN(0,K)\]
\[K_{i,j} = \sigma_g^2exp\bigg(-\rho^2(t_i-t_j)^2\bigg)\]
\(\sigma_g^2\) should be high for functions that cover a broad range on the y-axis
if \(t_i\) is distant from \(t_j\) then \(K_{i,j} \approx 0\)
the effect of \(t_i-t_j\) on \(K_{i,j}\) will depend on \(\rho\)
\[\omega(t) \sim MVN(0, K)\]
Where \(K_{i,j} = \sigma_g^2exp\bigg(-\rho^2(t_i-t_j)^2\bigg)\)
\[s(t) = \int_0^t \omega(u) du\]
\[y_i \sim N(s(t_i), \sigma_i^2)\] where \(\sigma_i^2\) will capture the variation of the observed sea-level values around the mean.
N Cahill, A C. Kemp, B P. Horton and A C. Parnell. A Bayesian Hierarchical Model for Reconstructing Relative Sea Level: From Raw Data to Rates of Change.Climate of the Past} , 12(2):525-542, 2016.
N Cahill, A C. Kemp, B P. Horton and A C. Parnell. Modeling sea-level change using errors-in-variables integrated Gaussian processes. Annals of Applied Statistics, 9(2): 547-571, 2015.