library(tidyverse)
library(Hmisc)
library(haven)
gss <- read_dta("gss_2002_week2.dta")
View(gss)
gss.clean <- gss %>%
mutate(.,
male.fac = as_factor(male),
selfemp.fac = as_factor(selfemp),
ses_level.fac = as_factor(selfemp))
linearmodel1 <- lm(hrs1 ~ male + age + selfemp + educ, data = gss.clean)
summary(linearmodel1)
Call:
lm(formula = hrs1 ~ male + age + selfemp + educ, data = gss.clean)
Residuals:
Min 1Q Median 3Q Max
-46.510 -6.214 0.257 5.788 51.444
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.83148 2.05585 16.943 < 2e-16 ***
male 6.52371 0.68547 9.517 < 2e-16 ***
age -0.06822 0.02702 -2.524 0.0117 *
selfemp -1.13306 1.03459 -1.095 0.2736
educ 0.48698 0.12469 3.905 9.77e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 14.18 on 1712 degrees of freedom
(1048 observations deleted due to missingness)
Multiple R-squared: 0.0608, Adjusted R-squared: 0.05861
F-statistic: 27.71 on 4 and 1712 DF, p-value: < 2.2e-16
library(reghelper)
lm1.beta <- beta(linearmodel1)
lm1.beta
Call:
lm(formula = "hrs1.z ~ male.z + age.z + selfemp.z + educ.z",
data = data)
Residuals:
Min 1Q Median 3Q Max
-3.1834 -0.4253 0.0176 0.3961 3.5211
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.230e-16 2.342e-02 0.000 1.0000
male.z 2.233e-01 2.346e-02 9.517 < 2e-16 ***
age.z -6.022e-02 2.385e-02 -2.524 0.0117 *
selfemp.z -2.613e-02 2.386e-02 -1.095 0.2736
educ.z 9.164e-02 2.347e-02 3.905 9.77e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9703 on 1712 degrees of freedom
Multiple R-squared: 0.0608, Adjusted R-squared: 0.05861
F-statistic: 27.71 on 4 and 1712 DF, p-value: < 2.2e-16
anova1 <- aov(hrs1 ~ ses_level.fac, data=gss.clean)
summary(anova1)
Df Sum Sq Mean Sq F value Pr(>F)
ses_level.fac 1 240 240.1 1.124 0.289
Residuals 1726 368599 213.6
1037 observations deleted due to missingness
gss.clean %>%
group_by(ses_level.fac) %>%
summarise(n = n(), mean = mean(hrs1))
`summarise()` ungrouping output (override with `.groups` argument)
pairwise.t.test(gss.clean$hrs1, gss.clean$ses_level.fac, p.adjust.method = "bonf")
Pairwise comparisons using t tests with pooled SD
data: gss.clean$hrs1 and gss.clean$ses_level.fac
self-employed
someone else 0.29
P value adjustment method: bonferroni
LS0tDQp0aXRsZTogIk1vZHVsZSAyIENvbnRlbnQgUmV2aWV3Ig0KYXV0aG9yOiAiSmFrZSBSZXlub2xkcyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCg0KYGBge3J9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoSG1pc2MpDQpsaWJyYXJ5KGhhdmVuKQ0KDQoNCmdzcyA8LSByZWFkX2R0YSgiZ3NzXzIwMDJfd2VlazIuZHRhIikNClZpZXcoZ3NzKQ0KDQpgYGANCg0KYGBge3J9DQpnc3MuY2xlYW4gPC0gZ3NzICU+JQ0KICBtdXRhdGUoLiwNCiAgICAgICAgIG1hbGUuZmFjID0gYXNfZmFjdG9yKG1hbGUpLA0KICAgICAgICAgc2VsZmVtcC5mYWMgPSBhc19mYWN0b3Ioc2VsZmVtcCksDQogICAgICAgIHNlc19sZXZlbC5mYWMgPSBhc19mYWN0b3Ioc2VsZmVtcCkpDQpgYGANCg0KYGBge3J9DQpsaW5lYXJtb2RlbDEgPC0gbG0oaHJzMSB+IG1hbGUgKyBhZ2UgKyBzZWxmZW1wICsgZWR1YywgZGF0YSA9IGdzcy5jbGVhbikNCnN1bW1hcnkobGluZWFybW9kZWwxKQ0KYGBgDQpgYGB7cn0NCmxpYnJhcnkocmVnaGVscGVyKQ0KbG0xLmJldGEgPC0gYmV0YShsaW5lYXJtb2RlbDEpDQpsbTEuYmV0YQ0KYGBgDQpgYGB7cn0NCmFub3ZhMSA8LSBhb3YoaHJzMSB+IHNlc19sZXZlbC5mYWMsIGRhdGE9Z3NzLmNsZWFuKQ0Kc3VtbWFyeShhbm92YTEpDQpgYGANCmBgYHtyfQ0KZ3NzLmNsZWFuICU+JQ0KICBncm91cF9ieShzZXNfbGV2ZWwuZmFjKSAlPiUNCiAgc3VtbWFyaXNlKG4gPSBuKCksIG1lYW4gPSBtZWFuKGhyczEpKQ0KYGBgDQoNCmBgYHtyfQ0KcGFpcndpc2UudC50ZXN0KGdzcy5jbGVhbiRocnMxLCBnc3MuY2xlYW4kc2VzX2xldmVsLmZhYywgcC5hZGp1c3QubWV0aG9kID0gImJvbmYiKQ0KYGBgDQoNCg==