####Q1:Fit a model with Class as the outcome and all of the covariates as predictors, then reduce the model using the step function. Report your final model and the deviance. Can you use the deviance to tell if the final model fits the data?
library(faraway)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
## ✓ tibble 3.0.6 ✓ dplyr 1.0.3
## ✓ tidyr 1.1.2 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggplot2)
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
library(ResourceSelection)
## ResourceSelection 0.3-5 2019-07-22
data(wbca)
wbca
## Class Adhes BNucl Chrom Epith Mitos NNucl Thick UShap USize
## 1 1 1 1 3 2 1 1 5 1 1
## 2 1 5 10 3 7 1 2 5 4 4
## 3 1 1 2 3 2 1 1 3 1 1
## 4 1 1 4 3 3 1 7 6 8 8
## 5 1 3 1 3 2 1 1 4 1 1
## 6 0 8 10 9 7 1 7 8 10 10
## 7 1 1 10 3 2 1 1 1 1 1
## 8 1 1 1 3 2 1 1 2 2 1
## 9 1 1 1 1 2 5 1 2 1 1
## 10 1 1 1 2 2 1 1 4 1 2
## 11 1 1 1 3 1 1 1 1 1 1
## 12 1 1 1 2 2 1 1 2 1 1
## 13 0 3 3 4 2 1 4 5 3 3
## 14 1 1 3 3 2 1 1 1 1 1
## 15 0 10 9 5 7 4 5 8 5 7
## 16 0 4 1 4 6 1 3 7 6 4
## 17 1 1 1 2 2 1 1 4 1 1
## 18 1 1 1 3 2 1 1 4 1 1
## 19 0 6 10 4 4 2 1 10 7 7
## 20 1 1 1 3 2 1 1 6 1 1
## 21 0 10 10 5 5 4 4 7 2 3
## 22 0 3 7 7 6 1 10 10 5 5
## 23 1 1 1 2 2 1 1 3 1 1
## 24 1 1 1 3 2 1 1 1 1 1
## 25 0 4 7 3 2 1 6 5 3 2
## 26 1 1 1 2 1 1 1 3 1 2
## 27 1 1 1 2 2 1 1 5 1 1
## 28 1 1 1 2 2 1 1 2 1 1
## 29 1 1 1 1 2 1 1 1 3 1
## 30 1 1 1 2 1 1 1 3 1 1
## 31 1 1 1 3 2 1 1 2 1 1
## 32 0 3 5 7 8 3 4 10 7 7
## 33 1 2 1 3 2 1 1 2 1 1
## 34 1 1 1 2 2 1 1 3 2 1
## 35 1 1 1 2 2 1 1 2 1 1
## 36 0 8 1 8 6 1 9 10 10 10
## 37 1 1 1 7 1 1 1 6 1 2
## 38 0 9 10 5 2 1 6 5 4 4
## 39 0 3 7 7 6 1 5 2 3 5
## 40 0 1 3 6 3 2 5 10 3 4
## 41 0 2 10 7 8 3 3 6 10 10
## 42 0 6 1 3 10 1 1 5 5 6
## 43 0 4 1 8 8 1 10 10 10 10
## 44 1 1 1 2 2 2 1 1 1 1
## 45 0 4 9 4 4 1 8 3 7 7
## 46 1 1 1 2 2 1 1 1 1 1
## 47 1 3 1 3 2 1 1 4 1 1
## 48 0 2 8 3 4 2 8 7 7 8
## 49 0 1 3 2 2 5 1 9 8 5
## 50 0 4 4 3 2 1 4 5 3 3
## 51 0 2 5 4 3 2 10 10 6 3
## 52 0 8 8 7 10 7 3 5 5 5
## 53 0 6 8 7 8 1 1 10 5 5
## 54 0 3 5 3 4 1 6 10 6 6
## 55 0 1 6 3 3 1 9 8 10 10
## 56 0 1 1 5 5 4 4 8 4 2
## 57 0 1 10 5 6 1 1 5 3 2
## 58 0 2 2 5 2 1 1 9 5 5
## 59 0 5 3 4 3 1 10 5 5 3
## 60 1 1 2 2 2 1 1 1 1 1
## 61 0 1 8 3 10 1 3 9 10 10
## 62 0 1 2 3 5 1 9 6 4 3
## 63 1 1 1 2 2 1 1 1 1 1
## 64 0 1 2 4 3 10 3 10 2 4
## 65 1 1 1 3 2 1 1 4 1 1
## 66 0 1 10 4 8 1 9 5 4 3
## 67 0 3 9 8 4 8 9 8 8 3
## 68 1 1 1 3 2 1 2 1 1 1
## 69 1 1 1 2 2 1 1 5 3 1
## 70 0 8 2 7 10 10 8 6 2 10
## 71 1 2 1 7 2 1 2 1 3 3
## 72 0 10 10 4 6 1 8 9 5 4
## 73 0 1 4 3 3 3 2 10 4 6
## 74 1 1 2 4 2 1 2 1 2 1
## 75 1 1 1 2 2 1 1 1 4 1
## 76 1 2 1 2 2 1 1 5 1 3
## 77 1 1 3 3 2 1 1 3 1 1
## 78 1 1 1 2 3 1 1 2 1 1
## 79 1 1 1 7 1 1 1 2 2 2
## 80 1 2 1 2 2 1 1 4 1 1
## 81 1 1 1 3 2 1 1 5 1 2
## 82 1 1 2 7 2 1 1 3 1 1
## 83 0 8 9 7 8 7 10 3 7 5
## 84 0 1 4 4 10 10 10 5 6 10
## 85 0 4 8 4 5 1 4 3 6 3
## 86 0 6 10 6 5 3 8 3 6 6
## 87 1 1 1 3 2 1 1 4 1 1
## 88 1 2 1 2 3 1 1 2 1 1
## 89 1 1 1 3 2 1 1 1 1 1
## 90 1 2 1 1 2 1 1 3 1 1
## 91 1 1 1 3 2 1 1 4 1 1
## 92 1 1 1 2 2 1 1 1 1 1
## 93 1 1 1 3 2 1 1 2 1 1
## 94 1 1 1 3 2 1 1 1 1 1
## 95 1 2 1 1 2 1 1 2 1 1
## 96 1 1 1 3 2 1 1 5 1 1
## 97 0 2 6 2 10 10 9 9 9 6
## 98 0 10 10 7 5 4 9 7 6 5
## 99 0 1 5 3 10 2 10 10 5 3
## 100 0 4 5 2 2 1 5 2 4 3
## 101 1 1 1 3 2 1 1 4 2 1
## 102 0 1 3 7 6 1 1 8 3 2
## 103 0 10 1 8 10 8 8 10 10 10
## 104 0 4 3 3 3 7 2 7 4 3
## 105 0 8 10 4 2 1 1 10 10 10
## 106 0 10 10 5 8 1 7 1 8 6
## 107 1 1 1 2 2 1 3 1 1 1
## 108 0 4 9 7 3 3 8 6 4 5
## 109 1 2 2 5 2 2 3 1 1 3
## 110 0 3 9 3 5 1 1 8 4 6
## 111 0 10 10 7 2 3 3 10 3 3
## 112 0 3 8 8 10 1 1 10 10 10
## 113 1 1 3 3 2 1 1 3 2 3
## 114 1 1 5 1 2 1 1 1 1 1
## 115 1 1 2 3 2 1 2 8 3 3
## 116 0 10 10 7 4 8 5 4 5 5
## 117 1 1 3 1 4 1 1 1 1 1
## 118 1 1 2 3 2 1 1 3 1 2
## 119 1 2 1 3 2 1 1 1 2 1
## 120 1 1 2 3 2 1 1 4 1 2
## 121 0 2 10 5 10 3 3 10 10 10
## 122 0 1 10 5 8 1 3 5 5 3
## 123 0 7 7 8 9 1 10 5 6 4
## 124 1 1 1 2 2 1 1 1 1 1
## 125 0 7 10 7 4 5 5 7 3 5
## 126 1 1 1 3 2 1 1 3 1 1
## 127 0 4 10 1 5 2 6 8 5 3
## 128 1 1 1 1 10 1 1 1 1 1
## 129 1 1 1 2 2 1 1 5 3 1
## 130 1 1 1 3 2 1 1 2 1 1
## 131 0 10 10 3 8 3 6 5 8 10
## 132 1 1 1 2 2 1 2 3 1 1
## 133 1 1 1 2 3 1 1 3 1 1
## 134 1 1 2 3 2 1 3 5 1 1
## 135 1 1 1 2 2 1 1 4 1 1
## 136 1 1 1 1 2 1 1 3 1 1
## 137 1 1 1 2 2 1 1 4 2 1
## 138 1 1 1 1 2 1 1 3 1 1
## 139 1 1 1 1 2 1 1 2 1 1
## 140 0 4 5 4 4 3 3 9 5 5
## 141 1 1 5 1 2 1 1 1 1 1
## 142 1 1 1 2 2 1 1 2 1 1
## 143 0 2 8 4 6 1 1 3 5 4
## 144 1 1 2 2 3 1 1 1 1 1
## 145 1 3 1 5 8 1 8 3 1 1
## 146 0 4 10 7 10 7 8 8 7 8
## 147 1 1 1 3 1 1 1 1 1 1
## 148 0 1 10 5 6 3 4 7 4 2
## 149 0 6 5 8 4 1 10 10 8 10
## 150 1 1 3 1 2 1 1 4 1 1
## 151 1 1 1 1 2 1 1 1 1 1
## 152 0 6 10 3 3 1 1 5 5 5
## 153 1 1 1 2 2 1 1 1 2 2
## 154 1 1 1 3 2 1 1 2 1 1
## 155 0 3 10 7 6 6 10 9 10 9
## 156 0 4 10 5 5 2 7 10 7 7
## 157 1 1 1 3 2 1 2 4 1 1
## 158 1 1 1 3 2 1 1 3 1 1
## 159 1 2 3 1 1 7 1 1 1 1
## 160 1 1 2 3 2 1 2 4 1 1
## 161 0 8 10 3 8 3 10 5 7 6
## 162 0 10 1 3 6 10 1 10 10 8
## 163 1 1 1 3 2 1 1 3 1 1
## 164 1 2 1 1 1 1 1 1 1 1
## 165 1 1 1 1 2 1 1 3 1 1
## 166 1 1 1 3 2 1 1 1 1 1
## 167 1 1 1 2 2 1 1 1 1 1
## 168 0 10 10 10 8 7 10 6 10 10
## 169 0 4 10 6 3 1 1 8 5 6
## 170 0 7 10 5 10 1 7 5 7 8
## 171 1 1 1 3 2 1 1 2 1 1
## 172 0 3 1 5 8 3 10 5 10 10
## 173 1 1 1 3 2 1 1 4 1 1
## 174 0 3 10 3 6 1 1 5 3 3
## 175 1 1 1 3 1 1 1 1 1 1
## 176 1 1 1 1 2 1 1 1 1 1
## 177 1 1 1 3 2 1 1 6 1 1
## 178 0 8 10 7 5 1 8 5 8 8
## 179 0 4 10 5 4 1 1 8 6 7
## 180 1 1 1 3 1 1 1 2 1 1
## 181 0 6 8 7 5 1 10 1 8 5
## 182 0 10 10 7 6 10 7 10 6 5
## 183 0 10 8 9 5 1 10 5 4 8
## 184 1 1 1 3 2 1 1 1 3 2
## 185 0 8 8 7 6 1 10 10 10 10
## 186 0 10 10 4 10 3 10 7 10 5
## 187 1 1 1 2 2 1 1 5 1 1
## 188 1 1 1 3 2 1 1 1 1 1
## 189 1 1 1 3 2 1 1 3 1 1
## 190 1 1 1 3 2 1 1 4 1 1
## 191 1 4 1 3 2 1 1 5 1 1
## 192 1 1 1 1 2 1 1 1 1 1
## 193 1 1 1 2 2 1 1 3 1 1
## 194 0 5 10 7 5 3 8 9 7 7
## 195 0 4 10 8 10 1 1 10 8 8
## 196 1 1 1 3 2 1 1 1 1 1
## 197 1 1 1 3 2 1 1 5 1 1
## 198 1 1 1 3 2 1 1 1 1 1
## 199 0 9 10 7 6 5 10 5 10 10
## 200 0 3 5 3 7 1 5 10 9 10
## 201 1 1 1 3 1 1 1 1 1 1
## 202 1 1 1 3 1 1 1 1 1 1
## 203 1 1 1 3 1 1 1 5 1 1
## 204 0 10 10 8 5 6 10 8 10 10
## 205 0 8 8 7 4 1 7 8 8 10
## 206 1 1 1 3 2 1 1 1 1 1
## 207 0 10 10 7 7 4 10 10 10 10
## 208 0 10 10 10 3 1 6 10 10 10
## 209 0 7 5 5 5 2 10 8 8 7
## 210 1 1 1 2 2 1 1 1 1 1
## 211 1 1 1 3 2 1 1 1 1 1
## 212 0 7 4 8 6 2 10 6 7 10
## 213 1 1 1 3 2 1 1 6 3 1
## 214 1 2 1 3 2 1 1 1 1 1
## 215 0 3 10 9 10 1 10 10 4 6
## 216 0 3 5 2 1 1 1 4 1 1
## 217 0 3 8 7 3 1 4 7 6 5
## 218 0 6 10 7 3 2 9 10 5 5
## 219 1 1 1 2 2 1 1 1 1 1
## 220 0 4 10 8 4 1 9 10 7 5
## 221 0 5 5 7 3 1 7 8 9 9
## 222 1 1 1 3 1 1 1 1 1 1
## 223 0 3 10 9 10 1 10 10 10 10
## 224 0 4 7 7 3 1 6 7 7 4
## 225 0 5 8 8 6 2 9 6 7 8
## 226 1 3 1 4 3 1 3 8 6 4
## 227 0 5 10 4 5 1 1 10 5 4
## 228 1 1 1 3 3 1 6 3 2 3
## 229 0 2 10 4 8 10 8 10 8 8
## 230 0 5 2 4 6 4 10 9 8 8
## 231 0 8 9 3 6 10 10 8 10 10
## 232 0 2 10 5 3 2 3 10 3 4
## 233 1 3 2 2 2 1 3 5 3 1
## 234 1 3 1 3 1 1 1 3 1 1
## 235 1 1 1 3 2 1 1 2 1 1
## 236 1 1 5 5 2 1 1 1 1 1
## 237 1 1 1 3 2 1 1 1 1 1
## 238 1 2 2 3 2 1 1 5 1 1
## 239 0 8 10 7 5 1 8 8 10 10
## 240 0 1 9 3 2 1 3 8 4 4
## 241 1 1 1 3 2 1 6 4 1 1
## 242 1 1 1 1 2 1 1 1 2 2
## 243 0 10 10 5 2 3 3 10 4 4
## 244 1 5 10 3 3 3 5 6 3 3
## 245 0 2 10 7 8 3 3 6 10 10
## 246 0 1 8 3 10 1 3 9 10 10
## 247 0 2 10 3 4 1 6 5 6 6
## 248 1 1 1 1 2 1 1 3 1 1
## 249 1 1 1 2 2 1 1 3 1 1
## 250 1 1 1 3 2 1 1 3 1 1
## 251 1 1 8 3 5 1 4 5 7 7
## 252 0 10 10 5 3 3 1 10 8 5
## 253 0 6 10 10 10 5 6 5 10 10
## 254 0 4 10 7 5 1 8 8 9 8
## 255 0 10 10 5 6 1 5 10 4 4
## 256 0 10 3 5 10 3 3 7 4 9
## 257 1 1 1 3 2 1 2 5 4 1
## 258 0 3 10 4 3 2 3 10 6 10
## 259 0 2 10 7 3 1 1 3 5 3
## 260 0 2 4 8 3 8 7 10 8 8
## 261 1 1 1 3 2 1 1 1 1 1
## 262 0 1 10 3 3 2 9 8 7 4
## 263 1 1 1 3 2 1 1 5 1 1
## 264 0 2 10 7 3 1 1 3 5 3
## 265 0 1 4 3 3 1 3 7 4 2
## 266 1 1 1 3 2 1 2 3 1 1
## 267 1 1 1 2 2 1 1 3 1 1
## 268 1 1 1 2 2 1 1 1 1 1
## 269 1 1 1 3 2 1 1 1 1 1
## 270 0 3 7 3 3 8 3 10 7 5
## 271 1 1 1 3 2 1 1 3 1 1
## 272 1 2 1 3 2 1 1 2 1 1
## 273 0 10 10 5 4 1 6 1 3 4
## 274 0 1 10 5 2 1 3 10 6 4
## 275 0 10 10 3 2 2 8 7 5 4
## 276 0 10 10 10 8 3 7 8 10 10
## 277 0 10 10 4 10 10 10 10 10 10
## 278 1 1 1 2 3 1 1 3 1 1
## 279 0 1 5 5 4 1 10 6 3 1
## 280 0 8 10 4 6 4 10 5 6 6
## 281 1 1 1 1 2 1 1 1 1 1
## 282 1 1 1 3 2 1 1 1 1 1
## 283 0 6 10 2 2 1 3 10 4 4
## 284 0 8 10 7 6 1 4 5 7 5
## 285 1 3 5 4 4 1 7 5 4 3
## 286 1 1 1 1 5 1 1 8 1 2
## 287 0 6 10 7 4 2 7 9 2 1
## 288 0 5 4 7 4 1 10 8 10 4
## 289 1 1 1 3 2 1 1 1 1 1
## 290 0 7 10 7 9 10 10 10 10 10
## 291 1 1 1 3 2 1 1 1 1 1
## 292 0 9 10 3 3 1 3 8 4 3
## 293 0 4 10 3 4 4 10 10 4 8
## 294 1 1 1 3 2 1 1 1 1 1
## 295 1 1 1 3 2 1 1 1 1 1
## 296 0 6 3 8 4 4 8 7 7 8
## 297 1 1 5 5 2 1 1 3 1 1
## 298 1 1 1 2 3 1 1 2 1 1
## 299 1 1 1 1 2 1 1 1 1 1
## 300 0 10 1 3 10 1 5 8 4 6
## 301 1 1 1 1 2 1 1 1 1 1
## 302 1 1 1 2 1 1 1 1 1 1
## 303 0 2 10 4 5 1 3 5 5 5
## 304 0 8 8 8 6 1 9 6 7 8
## 305 1 1 1 3 5 1 1 1 1 1
## 306 1 4 5 7 6 1 3 4 4 4
## 307 0 2 10 7 5 6 4 7 3 6
## 308 1 1 1 3 2 1 1 3 1 1
## 309 0 10 10 4 2 1 1 5 6 4
## 310 1 1 1 3 2 1 1 1 1 1
## 311 1 1 1 2 2 1 3 3 2 2
## 312 0 1 10 5 2 1 4 10 1 1
## 313 1 1 1 2 2 1 1 1 1 1
## 314 0 2 4 3 6 1 10 8 3 10
## 315 0 4 10 7 5 1 1 10 6 4
## 316 0 2 8 6 2 1 1 10 7 4
## 317 1 1 1 3 2 2 1 5 1 1
## 318 1 2 1 2 2 1 2 5 2 2
## 319 0 6 10 4 4 1 3 5 6 4
## 320 0 3 10 3 3 2 4 8 7 6
## 321 1 1 1 1 2 1 1 1 1 1
## 322 0 8 10 3 4 1 4 6 5 5
## 323 1 1 1 3 2 1 1 1 1 1
## 324 1 1 1 2 1 1 1 1 1 1
## 325 0 5 10 4 2 1 3 8 5 5
## 326 0 1 10 7 2 1 6 10 3 3
## 327 1 1 1 3 2 1 1 1 1 1
## 328 1 1 1 1 2 1 1 2 1 1
## 329 1 1 1 1 2 1 1 1 1 1
## 330 0 8 10 9 10 3 5 7 4 6
## 331 1 1 1 1 2 1 1 1 1 1
## 332 1 2 1 1 3 1 3 5 2 2
## 333 1 1 1 1 1 1 3 1 1 1
## 334 0 10 1 3 5 1 3 3 4 4
## 335 0 5 8 7 3 1 6 4 3 2
## 336 1 3 1 1 2 1 1 5 1 1
## 337 1 1 1 3 2 1 1 2 1 1
## 338 1 3 3 4 7 1 6 3 5 4
## 339 0 10 10 4 7 4 9 2 10 7
## 340 1 1 1 2 2 1 1 1 1 1
## 341 1 1 1 2 3 1 2 4 1 1
## 342 0 1 3 3 3 3 3 5 3 3
## 343 0 7 10 7 10 8 3 8 10 10
## 344 0 3 4 4 8 3 10 8 5 10
## 345 0 4 7 3 3 3 5 10 5 3
## 346 0 10 10 8 10 10 10 6 10 10
## 347 0 10 10 5 6 4 1 3 3 10
## 348 1 1 3 2 4 1 1 3 2 2
## 349 1 2 3 2 2 1 1 4 4 4
## 350 1 1 1 3 2 1 1 2 1 1
## 351 1 1 1 2 2 1 1 2 1 1
## 352 0 10 10 7 8 7 10 6 10 10
## 353 0 10 10 8 5 3 10 5 8 8
## 354 1 1 1 1 2 1 1 1 3 1
## 355 1 1 1 2 1 1 1 1 3 1
## 356 1 1 1 2 3 1 1 4 2 3
## 357 1 1 1 1 2 1 1 1 3 1
## 358 1 1 1 2 2 1 1 4 2 1
## 359 1 2 1 2 2 1 1 5 1 1
## 360 1 1 1 2 2 1 1 3 2 1
## 361 1 1 1 1 2 1 1 1 1 1
## 362 1 1 1 2 2 1 1 1 1 1
## 363 1 1 1 2 1 1 1 1 1 1
## 364 1 4 1 2 3 1 2 3 1 1
## 365 1 1 1 3 4 1 1 5 4 3
## 366 1 1 1 1 2 1 1 1 1 1
## 367 0 6 10 7 4 4 8 10 3 6
## 368 1 2 1 3 2 1 2 3 2 2
## 369 1 1 1 1 2 1 1 2 1 1
## 370 1 1 1 1 2 1 1 2 1 1
## 371 1 2 1 1 3 3 2 3 2 3
## 372 0 3 10 7 2 1 1 7 6 6
## 373 1 2 1 3 3 1 1 5 3 3
## 374 1 1 1 2 2 1 2 2 1 1
## 375 1 1 2 2 3 1 2 5 1 1
## 376 1 2 1 2 2 1 1 1 1 1
## 377 0 4 10 7 3 1 9 10 7 8
## 378 1 1 1 2 2 1 1 3 1 1
## 379 1 1 1 1 1 1 1 1 1 1
## 380 1 1 1 2 2 1 1 1 3 2
## 381 1 1 1 2 2 1 1 3 1 1
## 382 1 1 1 3 2 1 1 3 1 1
## 383 1 1 1 1 2 1 1 4 1 1
## 384 1 1 1 2 2 1 2 3 1 2
## 385 1 1 1 1 2 1 1 1 3 2
## 386 0 7 9 9 6 8 3 3 8 10
## 387 1 1 1 1 2 1 1 3 1 1
## 388 1 1 1 2 2 1 1 5 3 3
## 389 1 1 4 1 2 1 1 3 1 1
## 390 1 3 1 1 2 1 2 1 1 2
## 391 1 1 1 2 2 1 1 1 1 1
## 392 1 1 1 2 2 1 1 4 2 2
## 393 1 1 1 2 2 1 1 1 1 1
## 394 1 2 2 3 2 1 1 2 2 3
## 395 1 1 1 2 2 1 1 3 2 1
## 396 1 1 1 2 2 1 1 1 1 1
## 397 0 6 4 8 8 1 5 10 10 10
## 398 1 1 1 3 2 1 1 5 2 1
## 399 0 2 10 6 3 1 6 8 6 5
## 400 1 6 3 3 3 1 5 3 2 3
## 401 0 5 10 7 10 1 2 8 8 7
## 402 1 1 1 2 2 1 1 1 1 1
## 403 1 2 2 3 2 2 2 5 2 2
## 404 1 1 1 1 5 1 1 2 1 3
## 405 1 3 3 3 2 1 1 3 2 2
## 406 0 7 10 8 10 1 2 10 10 10
## 407 1 1 1 3 2 1 3 4 3 3
## 408 1 1 1 2 2 1 1 5 3 1
## 409 1 1 1 1 2 1 1 3 1 1
## 410 0 10 10 10 10 1 10 9 10 10
## 411 1 1 1 1 2 1 1 5 6 3
## 412 0 2 2 5 4 1 10 8 8 7
## 413 1 1 1 2 2 1 1 1 1 1
## 414 1 1 1 2 2 1 1 2 1 1
## 415 1 1 1 2 2 1 2 1 1 3
## 416 1 3 1 3 4 1 2 5 1 1
## 417 1 1 1 2 2 1 2 5 1 1
## 418 1 3 1 1 2 1 1 3 2 2
## 419 1 5 8 4 5 1 2 6 7 9
## 420 0 1 10 5 3 1 1 10 10 8
## 421 0 1 1 2 6 1 8 10 10 10
## 422 1 1 1 1 2 1 1 4 1 1
## 423 1 3 1 1 2 1 1 4 3 1
## 424 1 1 1 1 2 1 1 5 1 1
## 425 0 10 10 10 4 1 1 10 3 4
## 426 1 4 4 1 2 1 1 5 2 2
## 427 1 3 3 1 2 1 1 1 1 1
## 428 1 1 2 1 2 1 1 1 1 1
## 429 1 6 1 2 3 1 1 5 1 1
## 430 1 1 1 1 2 1 1 2 1 1
## 431 1 1 1 1 2 1 1 1 1 1
## 432 1 1 1 1 2 1 1 5 1 1
## 433 1 1 1 1 1 1 1 1 1 1
## 434 0 8 10 8 6 1 10 5 9 7
## 435 1 3 1 2 1 1 1 4 1 1
## 436 1 1 1 1 2 1 1 5 1 1
## 437 1 3 1 1 2 1 1 3 1 1
## 438 0 8 10 10 6 1 7 4 5 5
## 439 1 1 1 1 3 1 1 2 1 3
## 440 0 1 6 1 2 2 1 10 2 2
## 441 0 8 10 8 5 1 6 10 5 6
## 442 0 6 3 10 6 1 10 8 9 8
## 443 1 1 1 1 2 1 1 5 2 1
## 444 1 1 1 1 2 1 1 5 3 1
## 445 1 3 1 1 2 1 1 5 1 1
## 446 1 1 5 1 2 1 1 3 1 1
## 447 1 3 1 1 2 1 1 6 1 1
## 448 1 1 1 1 2 1 2 4 1 1
## 449 1 1 1 1 2 1 1 4 1 1
## 450 0 7 4 7 6 3 10 10 8 9
## 451 0 2 10 9 4 1 7 10 6 6
## 452 0 5 10 7 4 2 6 6 6 6
## 453 1 1 1 1 2 1 1 4 1 1
## 454 1 1 1 2 2 1 1 1 2 1
## 455 1 1 1 2 1 1 1 3 1 1
## 456 1 3 1 1 2 1 1 6 1 1
## 457 1 1 1 1 1 1 1 6 1 1
## 458 1 1 1 1 2 1 1 4 1 1
## 459 1 1 1 1 2 1 1 5 1 1
## 460 1 1 1 1 2 1 1 3 1 1
## 461 1 1 1 1 2 1 1 4 2 1
## 462 1 1 1 1 2 1 1 4 1 1
## 463 1 1 1 1 2 1 1 5 1 2
## 464 0 10 10 7 4 1 5 4 7 8
## 465 1 1 1 1 1 1 1 5 1 1
## 466 1 4 1 1 2 1 1 5 2 3
## 467 0 10 5 10 10 10 10 9 10 10
## 468 0 5 10 9 5 1 10 8 8 7
## 469 1 1 1 1 2 1 1 5 2 1
## 470 1 3 3 1 1 1 1 1 1 1
## 471 1 1 1 2 1 1 1 3 1 1
## 472 0 10 10 8 6 5 1 10 10 10
## 473 0 10 3 3 3 1 4 3 4 6
## 474 0 1 4 4 3 1 1 6 2 3
## 475 1 1 1 1 2 1 1 1 1 1
## 476 0 4 10 7 3 1 1 5 9 8
## 477 1 1 1 2 1 1 1 4 1 1
## 478 0 10 10 6 6 2 5 5 10 10
## 479 1 10 5 2 4 1 1 5 2 1
## 480 1 1 1 2 1 1 1 3 1 1
## 481 1 1 1 1 1 1 1 1 1 1
## 482 1 1 1 1 2 1 1 4 1 2
## 483 1 1 1 2 2 1 1 4 1 1
## 484 1 1 1 2 2 1 1 4 1 1
## 485 1 1 1 3 2 1 1 6 1 1
## 486 1 1 1 2 2 1 1 4 1 1
## 487 1 2 1 2 2 1 1 4 1 1
## 488 1 1 1 3 2 1 1 4 1 1
## 489 1 1 1 1 2 1 1 1 1 1
## 490 1 1 1 1 2 1 1 3 1 3
## 491 0 10 5 4 7 7 8 8 10 10
## 492 1 1 4 1 2 1 1 1 1 1
## 493 1 1 1 1 2 1 1 5 1 1
## 494 1 1 1 1 2 1 1 2 1 1
## 495 1 1 1 1 2 1 1 1 1 1
## 496 1 1 1 2 2 1 1 5 1 1
## 497 1 1 1 1 2 1 1 5 1 1
## 498 1 1 1 2 1 1 1 3 1 1
## 499 0 10 10 8 3 2 10 6 7 6
## 500 0 7 10 9 3 1 10 4 4 10
## 501 1 1 1 1 1 1 1 1 1 1
## 502 1 1 1 2 1 1 1 1 1 1
## 503 1 2 1 1 2 1 1 3 2 1
## 504 0 3 10 9 4 1 1 4 8 7
## 505 1 1 1 1 3 1 1 1 1 1
## 506 1 1 1 1 3 1 1 4 1 1
## 507 0 4 5 7 3 1 3 10 5 4
## 508 0 10 10 5 4 1 3 7 6 5
## 509 1 1 1 2 2 1 1 3 1 1
## 510 1 2 1 1 2 1 1 3 1 1
## 511 1 1 1 1 2 1 1 4 1 1
## 512 1 1 1 3 2 1 1 4 1 1
## 513 1 2 1 1 2 1 1 6 3 1
## 514 1 1 1 2 1 1 1 4 1 1
## 515 0 3 10 6 4 1 9 7 4 4
## 516 1 1 1 2 2 1 1 4 2 2
## 517 1 1 1 3 1 1 1 1 1 1
## 518 1 1 1 2 2 1 1 3 1 1
## 519 1 1 1 2 2 1 1 2 1 1
## 520 1 2 1 3 2 1 1 1 3 1
## 521 1 1 1 3 2 1 1 5 1 1
## 522 1 1 1 3 2 1 1 5 2 1
## 523 1 1 1 2 2 1 1 4 1 1
## 524 1 1 1 2 2 1 1 6 1 1
## 525 1 1 2 2 2 1 1 5 1 1
## 526 1 1 1 1 2 1 1 3 1 1
## 527 1 1 1 1 2 1 1 5 1 3
## 528 1 1 1 2 2 1 1 4 1 1
## 529 1 2 1 2 2 1 1 2 3 1
## 530 1 1 1 2 2 1 1 5 1 1
## 531 0 10 10 7 4 1 10 6 10 10
## 532 1 1 1 1 1 1 1 2 1 1
## 533 1 1 1 1 1 1 1 3 1 1
## 534 0 7 5 7 4 2 8 7 3 8
## 535 1 1 1 2 2 1 1 3 1 1
## 536 1 1 1 3 2 1 1 1 1 1
## 537 1 2 1 4 2 1 2 3 2 2
## 538 1 1 5 2 2 2 1 4 2 4
## 539 1 1 1 1 2 1 1 3 1 1
## 540 1 1 1 4 2 1 8 4 1 3
## 541 1 2 1 2 1 1 1 5 2 2
## 542 1 3 1 1 2 1 1 5 1 1
## 543 1 1 1 2 2 1 1 2 1 1
## 544 1 1 1 2 2 1 1 5 1 1
## 545 1 1 1 3 2 1 1 5 1 1
## 546 1 1 1 3 2 1 1 5 1 1
## 547 1 1 1 3 2 1 1 1 1 1
## 548 1 1 1 2 2 1 1 3 1 1
## 549 1 1 1 3 2 1 2 4 1 1
## 550 0 10 10 10 5 1 10 5 10 7
## 551 1 1 1 3 2 1 1 3 2 1
## 552 1 1 3 2 2 1 1 4 1 1
## 553 0 1 10 2 6 2 5 8 4 4
## 554 0 10 5 10 6 1 3 10 8 10
## 555 0 4 10 8 8 1 2 8 4 10
## 556 0 5 10 9 3 2 10 7 10 6
## 557 1 1 1 2 2 1 1 3 1 1
## 558 1 1 1 2 2 1 1 1 1 1
## 559 0 3 2 7 4 1 7 10 7 9
## 560 1 1 1 3 2 1 1 5 2 1
## 561 1 1 1 2 2 1 1 5 1 1
## 562 1 1 1 2 2 1 1 1 1 1
## 563 1 1 1 2 2 1 1 1 1 1
## 564 1 1 1 3 2 1 1 1 1 1
## 565 1 1 1 2 2 1 1 5 2 1
## 566 0 6 10 7 5 1 5 5 10 7
## 567 0 5 10 6 4 1 10 6 5 10
## 568 1 1 1 1 2 1 1 3 1 1
## 569 1 6 1 1 3 1 1 5 1 1
## 570 1 1 1 1 2 1 1 1 1 1
## 571 0 10 10 10 6 1 10 8 10 10
## 572 1 1 1 2 2 1 2 5 1 1
## 573 0 9 3 4 6 1 1 9 8 8
## 574 1 1 1 1 2 1 1 5 1 1
## 575 0 5 1 10 4 1 1 4 8 10
## 576 0 6 10 7 4 1 6 2 7 5
## 577 0 5 10 4 3 1 1 10 4 3
## 578 1 1 1 1 2 1 1 5 2 1
## 579 0 3 10 7 4 1 1 4 6 8
## 580 1 1 1 2 2 1 1 5 1 1
## 581 1 1 1 2 2 1 1 4 2 1
## 582 1 1 1 3 2 1 1 5 3 1
## 583 1 1 1 2 2 1 1 3 1 1
## 584 1 1 1 1 1 1 1 5 4 2
## 585 1 1 1 2 2 1 1 3 1 1
## 586 1 1 1 2 1 1 1 1 1 1
## 587 1 1 1 2 2 1 1 4 1 1
## 588 0 8 1 8 4 1 10 5 6 4
## 589 0 8 10 8 5 2 1 5 2 3
## 590 0 3 8 7 5 3 8 10 10 5
## 591 1 2 1 1 2 1 1 4 1 1
## 592 1 1 1 1 2 1 1 1 1 1
## 593 0 10 10 10 10 1 1 5 10 10
## 594 1 1 1 1 2 1 1 5 1 1
## 595 0 10 10 7 3 2 1 10 3 4
## 596 0 10 10 10 6 10 10 8 10 10
## 597 1 1 1 2 2 1 1 2 1 3
## 598 1 1 1 2 1 1 1 2 1 1
## 599 1 1 1 2 2 1 1 4 3 1
## 600 1 1 1 2 2 1 1 3 1 1
## 601 1 1 1 2 2 1 1 4 1 1
## 602 1 1 1 2 2 1 1 5 1 1
## 603 1 1 1 2 2 1 1 3 1 1
## 604 1 3 2 6 3 1 1 6 3 3
## 605 1 3 1 2 2 1 1 7 2 1
## 606 1 1 1 1 2 1 1 1 1 1
## 607 1 2 1 2 1 1 1 5 1 1
## 608 1 1 4 1 3 1 1 3 3 1
## 609 0 5 6 7 7 3 7 4 6 6
## 610 1 1 5 1 2 1 1 2 1 1
## 611 1 1 1 1 2 1 1 2 1 1
## 612 1 1 1 1 2 1 1 4 1 1
## 613 1 1 1 1 2 1 1 6 3 2
## 614 1 1 1 2 2 1 1 5 1 1
## 615 1 1 1 1 2 1 1 1 1 1
## 616 0 4 3 5 5 1 10 8 4 7
## 617 1 1 1 1 2 1 1 3 1 1
## 618 1 1 1 1 2 1 1 3 4 1
## 619 0 8 1 10 7 3 10 10 7 10
## 620 1 3 2 2 2 1 1 4 4 2
## 621 1 1 1 1 2 1 1 4 1 1
## 622 1 3 1 1 2 1 1 5 1 1
## 623 1 3 1 1 2 1 1 4 1 1
## 624 1 1 1 2 2 1 1 3 1 1
## 625 1 1 1 2 2 1 1 3 1 1
## 626 1 1 1 1 2 1 1 1 1 1
## 627 1 1 1 1 2 1 1 2 1 1
## 628 1 1 1 2 2 1 1 3 1 1
## 629 1 1 1 1 2 1 1 1 2 2
## 630 1 3 1 1 2 1 1 1 1 1
## 631 0 10 2 10 10 10 10 5 10 10
## 632 1 1 1 2 2 1 1 3 1 1
## 633 1 2 4 1 3 1 1 3 1 1
## 634 1 3 1 2 2 1 1 1 1 2
## 635 1 1 1 2 2 1 2 5 1 1
## 636 1 1 1 2 2 1 1 4 1 1
## 637 1 1 1 3 2 1 1 3 1 1
## 638 1 1 1 2 2 1 1 3 1 1
## 639 1 1 1 2 2 1 1 5 1 1
## 640 1 1 1 3 8 1 6 5 5 4
## 641 0 7 10 7 3 3 2 7 8 8
## 642 1 1 1 1 2 1 1 1 1 1
## 643 1 1 1 2 2 1 1 1 1 1
## 644 1 1 1 3 2 1 1 4 1 1
## 645 1 1 1 2 2 1 1 1 3 1
## 646 1 1 1 2 2 1 1 1 3 1
## 647 1 3 1 2 2 1 1 3 1 1
## 648 1 1 1 1 2 1 1 1 1 1
## 649 1 2 1 1 2 2 1 5 2 2
## 650 1 1 1 3 2 1 1 3 1 1
## 651 0 1 1 7 6 3 10 5 4 7
## 652 0 8 5 7 5 1 10 5 10 10
## 653 0 8 8 7 5 1 4 3 7 10
## 654 1 2 1 3 2 1 1 3 1 2
## 655 1 1 1 3 2 1 1 2 1 1
## 656 1 1 1 1 3 1 1 5 2 3
## 657 1 1 1 2 2 1 1 1 1 1
## 658 1 1 1 1 2 1 1 4 4 1
## 659 1 1 1 2 2 1 1 1 2 1
## 660 1 1 1 1 2 1 1 5 1 1
## 661 1 1 1 1 2 1 1 1 1 1
## 662 1 1 1 1 2 1 1 2 1 1
## 663 0 10 10 10 5 7 10 10 10 10
## 664 0 10 10 5 4 3 6 5 10 10
## 665 1 1 1 3 2 1 2 5 1 1
## 666 1 1 1 1 2 1 1 1 1 1
## 667 1 1 1 1 2 1 1 1 1 1
## 668 1 1 1 1 2 1 1 1 1 1
## 669 1 1 1 1 2 1 1 1 1 1
## 670 1 1 1 2 2 1 3 3 1 1
## 671 1 1 1 1 2 1 1 4 1 1
## 672 1 1 1 1 2 8 1 1 1 1
## 673 1 3 1 1 2 1 1 1 1 1
## 674 0 5 5 4 4 1 4 5 10 10
## 675 1 1 1 1 2 1 1 3 1 1
## 676 1 1 1 2 2 2 1 3 1 1
## 677 1 1 2 1 3 1 1 3 1 1
## 678 1 1 1 1 2 1 1 2 1 1
## 679 0 3 3 8 7 2 10 5 10 10
## 680 0 4 4 10 3 1 6 4 6 8
## 681 0 5 5 10 4 1 4 4 8 8
wbcam <- na.omit(wbca)
lmod <- glm(Class ~ Adhes+BNucl+Chrom+Epith+Mitos+NNucl+Thick+UShap+USize, family = binomial, data=wbcam)
summary(lmod)
##
## Call:
## glm(formula = Class ~ Adhes + BNucl + Chrom + Epith + Mitos +
## NNucl + Thick + UShap + USize, family = binomial, data = wbcam)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.48282 -0.01179 0.04739 0.09678 3.06425
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 11.16678 1.41491 7.892 2.97e-15 ***
## Adhes -0.39681 0.13384 -2.965 0.00303 **
## BNucl -0.41478 0.10230 -4.055 5.02e-05 ***
## Chrom -0.56456 0.18728 -3.014 0.00257 **
## Epith -0.06440 0.16595 -0.388 0.69795
## Mitos -0.65713 0.36764 -1.787 0.07387 .
## NNucl -0.28659 0.12620 -2.271 0.02315 *
## Thick -0.62675 0.15890 -3.944 8.01e-05 ***
## UShap -0.28011 0.25235 -1.110 0.26699
## USize 0.05718 0.23271 0.246 0.80589
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 881.388 on 680 degrees of freedom
## Residual deviance: 89.464 on 671 degrees of freedom
## AIC: 109.46
##
## Number of Fisher Scoring iterations: 8
lmodr <- step(lmod)
## Start: AIC=109.46
## Class ~ Adhes + BNucl + Chrom + Epith + Mitos + NNucl + Thick +
## UShap + USize
##
## Df Deviance AIC
## - USize 1 89.523 107.52
## - Epith 1 89.613 107.61
## - UShap 1 90.627 108.63
## <none> 89.464 109.46
## - Mitos 1 93.551 111.55
## - NNucl 1 95.204 113.20
## - Adhes 1 98.844 116.84
## - Chrom 1 99.841 117.84
## - BNucl 1 109.000 127.00
## - Thick 1 110.239 128.24
##
## Step: AIC=107.52
## Class ~ Adhes + BNucl + Chrom + Epith + Mitos + NNucl + Thick +
## UShap
##
## Df Deviance AIC
## - Epith 1 89.662 105.66
## - UShap 1 91.355 107.36
## <none> 89.523 107.52
## - Mitos 1 93.552 109.55
## - NNucl 1 95.231 111.23
## - Adhes 1 99.042 115.04
## - Chrom 1 100.153 116.15
## - BNucl 1 109.064 125.06
## - Thick 1 110.465 126.47
##
## Step: AIC=105.66
## Class ~ Adhes + BNucl + Chrom + Mitos + NNucl + Thick + UShap
##
## Df Deviance AIC
## <none> 89.662 105.66
## - UShap 1 91.884 105.88
## - Mitos 1 93.714 107.71
## - NNucl 1 95.853 109.85
## - Adhes 1 100.126 114.13
## - Chrom 1 100.844 114.84
## - BNucl 1 109.762 123.76
## - Thick 1 110.632 124.63
summary(lmodr)
##
## Call:
## glm(formula = Class ~ Adhes + BNucl + Chrom + Mitos + NNucl +
## Thick + UShap, family = binomial, data = wbcam)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.44161 -0.01119 0.04962 0.09741 3.08205
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 11.0333 1.3632 8.094 5.79e-16 ***
## Adhes -0.3984 0.1294 -3.080 0.00207 **
## BNucl -0.4192 0.1020 -4.111 3.93e-05 ***
## Chrom -0.5679 0.1840 -3.085 0.00203 **
## Mitos -0.6456 0.3634 -1.777 0.07561 .
## NNucl -0.2915 0.1236 -2.358 0.01837 *
## Thick -0.6216 0.1579 -3.937 8.27e-05 ***
## UShap -0.2541 0.1785 -1.423 0.15461
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 881.388 on 680 degrees of freedom
## Residual deviance: 89.662 on 673 degrees of freedom
## AIC: 105.66
##
## Number of Fisher Scoring iterations: 8
sumary(lmodr)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 11.03333 1.36320 8.0937 5.788e-16
## Adhes -0.39843 0.12935 -3.0802 0.002069
## BNucl -0.41920 0.10196 -4.1114 3.933e-05
## Chrom -0.56785 0.18405 -3.0854 0.002033
## Mitos -0.64561 0.36337 -1.7767 0.075611
## NNucl -0.29153 0.12363 -2.3580 0.018372
## Thick -0.62163 0.15791 -3.9366 8.266e-05
## UShap -0.25407 0.17849 -1.4234 0.154614
##
## n = 681 p = 8
## Deviance = 89.66176 Null Deviance = 881.38820 (Difference = 791.72644)
###Just the defiance is not enough for binomial regression to tell if the final model fits the data. We can use it as a chi square test to compare nested models.
###Q2.Use the Hosmer-Lemeshow test to determine if the final model fits the data.
library("varhandle")
actual=as.data.frame(to.dummy(wbcam$Class,"yes"))
actual=actual$yes.Yes
hoslem.test(wbcam$Class, fitted(lmodr), g=10)
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: wbcam$Class, fitted(lmodr)
## X-squared = 4.155, df = 8, p-value = 0.8429
#####Q3. Plot the ROC curve for the final model. What is the area under the curve and what does it say about the predictive strength of your model? Explain why area under the curve is a useful measure for characterizing the success of your predictive model.
gmod<-glm(Class ~ Adhes+BNucl+Chrom+Epith+Mitos+NNucl+Thick+UShap+USize, family = binomial, data=wbcam)
prob<- predict(gmod, type="response")
g<-roc(Class~prob, data=na.omit(wbca))
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(g)
auc(g)
## Area under the curve: 0.9974
## The Value of AUC is 0.9974 suggesting good fit of model.
####Area under curve is an indication of a probability fro an observation to predict the response correctly and therefore can be used to test the accuracy of the model. The value of .8-0.9 of AUC indicates good prediction by the model.