knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble 3.0.4 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(knitr)
#reading in merged Chronic Absenteesim File -- with only the columns needed
setwd("C:/Users/BlaiseSevier/Desktop/R Work")
fileChA <- "ID 814 SCH - Chronic Absenteeism.csv"
getwd()
## [1] "C:/Users/BlaiseSevier/Desktop/R Work"
ChA.sch <- read.csv(fileChA)
### How to set your working directory
## In quotation marks, ("C: /Users/BlaiseSevier/Desktop/R Work")
setwd("C:/Users/BlaiseSevier/Desktop/R Work")
els.k12 <- 5296851
nonel.k12 <- 45625438
For more information about the school form see: https://www2.ed.gov/about/offices/list/ocr/docs/2017-18-crdc-school-form.pdf.
TOTAL_STUDENTS_REPORTED_M Number of Male—Total enrolled students for all race-ethnicity categories TOTAL_STUDENTS_REPORTED_F Number of Female—Total enrolled students for all race-ethnicity categories
LEP_M Number of Male—Limited English proficient (LEP) Students LEP_F Number of Female—Limited English proficient (LEP) Students
#Code to change the -9s to 0s
ChA.sch[ChA.sch==-8]<-0
ChA.sch[ChA.sch==-9]<-0
ChA.sch[ChA.sch==-8]<-0
ChA.sch[ChA.sch==-6]<-0
ChA.sch[ChA.sch==-5]<-0
ChA.sch[ChA.sch==-3]<-0
# Reserve code value
# Definition
# -3 | Skip Logic Failure
# -5 | Action Plan
# -6 | Force Certified
# -8 | EDFacts Missing Data
# -9 | Not Applicable / Skipped
# -11 | Suppressed Data
TOTAL_STUDENTS_REPORTED_M Number of Male—Total enrolled students for all race-ethnicity categories TOTAL_STUDENTS_REPORTED_F Number of Female—Total enrolled students for all race-ethnicity categories
LEP_M Number of Male—Limited English proficient (LEP) Students LEP_F Number of Female—Limited English proficient (LEP) Students
#Computes the total number of a non-English Learner male students Chronically Absent courses
#dat$NonELM<- (dat$TOT_ENR_M - dat$TOT_LEPENR_M)
ChA.sch$NonELM <- (ChA.sch$TOTAL_STUDENTS_REPORTED_M - ChA.sch$LEP_M)
sum(ChA.sch$NonELM)
## [1] 3749745
#There are 3,749,745 Non-English Learner Male Students Chronically Absent
#Total female non-EL
#dat$NonELF <-dat$TOT_ENR_F-dat$TOT_LEPENR_F
ChA.sch$NonELF <- (ChA.sch$TOTAL_STUDENTS_REPORTED_F - ChA.sch$LEP_F)
sum(ChA.sch$NonELF)
## [1] 3546373
#There are 3,546,373 Non-English Learner Females Enrolled Chronically Absent courses.
#total non EL
#dat$NonEL<-dat$NonELF + dat$NonELM
ChA.sch$NonEL <- ChA.sch$NonELF + ChA.sch$NonELM
non.el.ChA <- sum(ChA.sch$NonEL)
non.el.ChA
## [1] 7296118
#There are 7,296,118 Non-English Learners Enrolled Chronically Absent
#Total Lep Male Chronically Absent
#dat$ELMGT <- dat$SCH_GTENR_LEP_M
ChA.sch$ELM.ChA <- ChA.sch$LEP_M
sum(ChA.sch$LEP_M)
## [1] 451893
sum(ChA.sch$ELM.ChA)
## [1] 451893
## There is 451,893 English Learner Males Chronically Absent
#Total LEP Female in GT
#dat$ELFGT <- dat$SCH_GTENR_LEP_F
ChA.sch$ELF.ChA <- ChA.sch$LEP_F
sum(ChA.sch$ELF.ChA)
## [1] 374486
## There are 374,486 EL Females Chronically Absent
#dat$ELEnrol <- dat$TOT_LEPENR_M + dat$TOT_LEPENR_F
ChA.sch$ELEnrolChA<- ChA.sch$ELM.ChA + ChA.sch$ELF.ChA
els.ChA <- sum(ChA.sch$ELEnrolChA)
sum(els.ChA)
## [1] 826379
## There is 826,379 English learners Chronically Absent
#Percentage of ELs in Chronically Absent in K-12 15.6%
round(els.ChA/els.k12*100,2)
## [1] 15.6
#Percentage of non-ELs Chronically Absent in K-12 is 15.99%
round(non.el.ChA/nonel.k12*100,2)
## [1] 15.99