1 Libraries

library(meta)
library(metasens)
library(readxl)
library(metafor)
library(DescTools)
library(psych)
library(tidyverse)
library(metaviz)
library(table1)
library(stargazer)

2 Data

#download data and subset it
data_full <- read_xlsx("/Users/carolinaferreiraatuesta/Documents/H-LAND/Meta Analysis/representative_meta_analysis2.xlsx", sheet = "representatives_global_memory")
data <- subset(data_full, table1 ==1, exclude !=0 ) 

3 Tables 1

data_table1 <- subset(data_full, table1 == 1, exclude != 0)
#labels
label(data_table1$memory_composite) <- "Memory"
label(data_table1$global_composite) <- 'Global'
label(data_table1$author) <- 'Author'
label(data_table1$year) <- 'Year '
label(data_table1$amyloid) <- 'Amyloid'
label(data_table1$tau) <- 'Tau'
label(data_table1$interaction) <- 'Interaction'
label(data_table1$addition) <- 'Addition'
label(data_table1$selected_tau_amyloid) <- 'Selected ligand'
label(data_table1$ligand) <- 'Ligand'
label(data_table1$ligand_other) <- 'Ligand other'
label(data_table1$csf) <- 'CSF'
label(data_table1$csf_other) <- 'CSF other'
label(data_table1$serum) <- 'Serum'
label(data_table1$type_study) <- 'Type study'
label(data_table1$neurodeg) <- 'Neurodegeneration'
label(data_table1$method) <- 'Method'
label(data_table1$controlled) <- 'Controlled'
label(data_table1$cov_time) <- 'Time'
label(data_table1$sex) <- 'Sex'
label(data_table1$education) <- 'Education'
label(data_table1$apoe) <- 'Apoe'
label(data_table1$covaratiate_others) <- 'Other cov'
label(data_table1$cohort_database) <- 'Cohort'
label(data_table1$age_type) <- 'Age type'
#label(data_table1$age) <- 'Age'
#label(data_table1$age_variance) <- 'Age variance'
#abel(data_table1$total_nc) <- 'Total N'
#label(data_table1$nc_pos) <- 'N positive'
#label(data_table1$nc_neg) <- 'N negative'
label(data_table1$roi_lateral_temporal) <- 'ROI temporal lateral'
label(data_table1$roi_entorhinal_hippocampus) <-
'ROI entorhinal or hipocampus'
label(data_table1$roi_lateral_parietal) <- 'ROI parietal lateral'
label(data_table1$roi_cingulate) <- 'ROI cingulate'
label(data_table1$roi_frontal) <- 'ROI frontal'
label(data_table1$roi_precuneus) <- 'ROI precuneus'
label(data_table1$roi_occipital) <- 'ROI occipital'
label(data_table1$suvr_dvr) <- 'SUVR/DVR'
#label(data_table1$type_cognitive) <- ''
label(data_table1$cross_long) <- 'CS or Longitudinal'
label(data_table1$all_r) <- 'R value'
label(data_table1$exclude) <- ''
label(data_table1$fisherz) <- 'Fisher z'
label(data_table1$weight) <- 'Weighted (n-3)'
label(data_table1$weight_se) <- 'Weigted SE'

#as factors

data_table1$memory_composite <-
as.factor(data_table1$memory_composite)
data_table1$global_composite <-
as.factor(data_table1$global_composite)
data_table1$amyloid <- as.factor(data_table1$amyloid)
data_table1$tau <- as.factor(data_table1$tau)
data_table1$interaction <- as.factor(data_table1$interaction)
data_table1$addition <- as.factor(data_table1$addition)
data_table1$selected_tau_amyloid <-
as.factor(data_table1$selected_tau_amyloid)
data_table1$type_study <- as.factor(data_table1$type_study)
data_table1$neurodeg <- as.factor(data_table1$neurodeg)
data_table1$sex <- as.factor(data_table1$sex)
data_table1$education <- as.factor(data_table1$education)
data_table1$apoe <- as.factor(data_table1$apoe)
data_table1$age_type <- as.factor(data_table1$age_type)
data_table1$roi_lateral_temporal <-
as.factor(data_table1$roi_lateral_temporal)
data_table1$roi_entorhinal_hippocampus <-
as.factor(data_table1$roi_entorhinal_hippocampus)
data_table1$roi_lateral_parietal <-
as.factor(data_table1$roi_lateral_parietal)
data_table1$roi_cingulate <- as.factor(data_table1$roi_cingulate)
data_table1$roi_frontal <- as.factor(data_table1$roi_frontal)
data_table1$roi_precuneus <- as.factor(data_table1$roi_precuneus)
data_table1$roi_occipital <- as.factor(data_table1$roi_occipital)
data_table1$suvr_dvr <- as.factor(data_table1$suvr_dvr)
data_table1$type_cognitive <- as.factor(data_table1$type_cognitive)
data_table1$cross_long <- as.factor(data_table1$cross_long)

3.1 Table descriptive amyloid

3.2 Table descriptive tau

3.3 Table summary included papers

newtab <-
  data.frame(
  data_table1$author,
  data_table1$year,
  data_table1$cohort_database,
  data_table1$method,
  data_table1$cross_long,
  data_table1$cov_time,
  data_table1$controlled,
  data_table1$total_nc,
  data_table1$Global_composite,
  data_table1$Memory_composite
  )
  
  names(newtab)[names(newtab) == "data_table1.author"] <- "Author"
  names(newtab)[names(newtab) == "data_table1.method"] <- "Method"
  names(newtab)[names(newtab) == "data_table1.year"] <- "Year"
  names(newtab)[names(newtab) == "data_table1.cohort_database"] <- "Cohort"
  names(newtab)[names(newtab) == "data_table1.cross_long"] <- "Type of study"
  names(newtab)[names(newtab) == "data_table1.cov_time"] <- "Controlled by time of follow-up"
  names(newtab)[names(newtab) == "data_table1.controlled"] <- "Controlled"
  names(newtab)[names(newtab) == "data_table1.total_nc"] <- "N"
  names(newtab)[names(newtab) == "data_table1.Global_composite"] <- "Global"
  names(newtab)[names(newtab) == "data_table1.Memory_composite"] <- "Memory"
  
 
  kableExtra::kbl(newtab) %>%
  kableExtra::kable_paper(bootstrap_options = "striped", full_width = F)
Author Year Cohort Method Type of study Controlled by time of follow-up Controlled N Global Memory
Gu 2012 WHICAP Ab42 C No Yes 813 NA 0.0670742
Horn MM 2018 Dallas PiB C No Yes 195 NA 0.9584521
Hoscheidt SM 2016 IMPACT ab42/ab40/ptau/ttau C No Yes 70 NA 0.0964365
Hosokawa C 2014 Osakasayama, Japan, PiB C No No 90 0.76280172922419232 NA
Adamczuk K 2014 Leuven Flutemetamol C No Yes 56 0.22718473369882641 NA
Adamczuk K 2014 Leuven Flutemetamol C No Yes 56 NA 0.2150714
Aizenstein HJ 2008 PITT PiB C No No 38 -0.12150337320566384 NA
Aizenstein HJ 2008 PITT PiB C No No 34 NA -0.3791941
Pomara N 2005 Nathan Kline Ab42 L No No 34 -0.35 NA
Radanovic M 2019 Brazil ab42/ptau C No Yes 54 0.20699999999999999 NA
Radanovic M 2019 Brazil Ab42 C No Yes 54 0.21099999999999999 NA
Radanovic M 2019 Brazil ptau C No Yes 54 -0.28399999999999997 NA
Rentz DM 2016 HABS PiB C No Yes 133 -9.0226611881499053E-2 NA
Rentz DM 2016 HABS T807 C No Yes 133 -0.15079608745344522 NA
Rentz DM 2016 HABS PiB, T807 C No Yes 133 -2.2839243131540413E-2 NA
Rentz DM 2016 HABS PiB, T807 C No Yes 133 -0.11842018864844951 NA
Rentz DM 2010 HABS PiB C No Yes 66 NA 0.0000000
Resnick SM 2010 BLSA PiB L Yes Yes 51 NA -0.1386750
Resnick SM 2010 BLSA PiB L Yes Yes 51 -0.2055566128505921 NA
Roberts RO 2018 MCSA PiB L No Yes 1492 3.6762938557297759E-2 NA
Roberts RO 2018 MCSA PiB L No Yes 1492 NA 0.0385758
Roberts RO 2018 MCSA PiB C No No 1492 0.2466142594127082 NA
Roberts RO 2018 MCSA PiB C No No 1492 NA 0.1638525
Roe CM 2013 Knight Florbetapir, ptau L No Yes 430 5.4877517454045184E-2 NA
Roe CM 2013 Knight Florbetapir, ab42/ptau L No Yes 430 9.2646696819342747E-2 NA
Roe CM 2013 Knight Florbetapir, ab42 L No Yes 430 6.7820743484453855E-2 NA
Rosenberg PB 2013 John Hopkns Florbetapir C No No 15 NA -0.1500000
Rosenberg PB 2013 John Hopkns Florbetapir C No No 15 0.16500000000000001 NA
Sanabria A 2018 FACEHBI PiB C No Yes 200 NA 0.0000000
Schindler SE 2017 Knight Ab42 C Yes Yes 233 NA 0.0695833
Schindler SE 2017 Knight Ab42 C Yes Yes 233 7.5499999999999998E-2 NA
Schindler SE 2017 Knight ptau C Yes Yes 233 NA -0.0282500
Schindler SE 2017 Knight ptau C Yes Yes 233 -2.5000000000000005E-3 NA
Schindler SE 2017 Knight ab42/ptau C Yes Yes 233 NA -0.0950833
Schindler SE 2017 Knight ab42/ptau C Yes Yes 233 -6.9500000000000006E-2 NA
Schindler SE 2017 Knight Ab42 L Yes Yes 233 4.0499999999999994E-2 NA
Schindler SE 2017 Knight Ab42 L Yes Yes 233 NA 0.0110000
Schindler SE 2017 Knight ptau L Yes Yes 233 -2.3E-2 NA
Schindler SE 2017 Knight ptau L Yes Yes 233 NA -0.0175000
Schindler SE 2017 Knight ab42/ptau L Yes Yes 233 -7.0500000000000007E-2 NA
Schindler SE 2017 Knight ab42/ptau L Yes Yes 233 NA -0.0210000
Sala-Llonch R 2017 Norway Ab42 C No No 89 NA -0.0524737
Sala-Llonch R 2017 Norway Ab42 C No No 89 -4.6719648158868775E-2 NA
Sala-Llonch R 2017 Norway Ab42 L No No 89 0.11022825179754911 NA
Sierra-Rio A 2015 Barcelona ab42/ptau C No No 55 4.7520352686965583E-2 NA
Song Z 2016 DLBS Florbetapir C No No 82 NA 0.1287696
Song Z 2016 DLBS Florbetapir C No No 82 0.12252356361148627 NA
Song Z 2015 UCSF Florbetapir C No Yes 50 NA -0.0040000
Song Z 2015 UCSF Florbetapir C No Yes 50 -0.02 NA
Stomrud E 2010 CMRU Ab42 C No Yes 37 7.9000000000000001E-2 NA
Stomrud E 2010 CMRU ptau C No Yes 37 -3.2000000000000001E-2 NA
Stomrud E 2010 CMRU ptau L No Yes 37 0.06 NA
Stomrud E 2010 CMRU Ab42 L No Yes 37 -0.23 NA
Stomrud E 2010 CMRU ptau C No Yes 37 NA -0.1310000
Stomrud E 2010 CMRU ptau L No Yes 37 NA -0.2655000
Timmers T 2019 SCIENCe Florbetapir C No Yes 107 -0.1612406781552356 NA
Timmers T 2019 SCIENCe Florbetapir C No Yes 107 NA -0.0573891
Timmers T 2019 SCIENCe Florbetapir L No Yes 107 -3.478145606686512E-2 NA
Timmers T 2019 SCIENCe Florbetapir L No Yes 107 NA -0.1288514
Storandt M 2009 Knight PiB C No No 135 0.1209121696163073 NA
Storandt M 2009 Knight PiB L Yes Yes 135 4.10690352043829E-3 NA
Storandt M 2009 Knight PiB L Yes Yes 135 NA 0.0041069
Tardif CL 2017 INTREPAD Ab42 C No No 46 -0.11074397642818709 NA
Tardif CL 2017 INTREPAD ttau C No No 46 0.35701445353993361 NA
Teipel SJ 2017 INSIGHT Florbetapir C No Yes 318 -0.11 NA
Teipel SJ 2017 INSIGHT Florbetapir C No Yes 318 NA -0.1100000
van Bergen JMG 2018 zurich Flutemetamol C No Yes 116 -4.4784813577462355E-2 NA
van Harten AC 2013 Amsterdam Ab42 C No No 132 -1.4504945216194559E-2 NA
van Harten AC 2013 Amsterdam ptau C No No 132 NA -0.0651405
van Harten AC 2013 Amsterdam ptau C No No 132 -4.3478260869565216E-2 NA
van Harten AC 2013 Amsterdam ab42/ttau C No No 132 NA -0.0579284
van Harten AC 2013 Amsterdam ab42/ttau C No No 132 0 NA
van Harten AC 2013 Amsterdam Ab42 C No No 132 NA -0.1400443
van Harten AC 2013 Amsterdam Ab42 L Yes No 132 -0.14356203435505357 NA
van Harten AC 2013 Amsterdam ptau L Yes No 132 NA -0.0434783
van Harten AC 2013 Amsterdam ptau L Yes No 132 -1.4504945216194559E-2 NA
van Harten AC 2013 Amsterdam ab42/ttau L Yes No 132 NA -0.1505812
van Harten AC 2013 Amsterdam ab42/ttau L Yes No 132 -0.14356203435505357 NA
van Harten AC 2013 Amsterdam Ab42 L Yes No 132 NA -0.0579284
Villemagne VL 2014 AIBL 18F-THK523 C No No 10 NA 0.0000000
Visser PJ 2009 DESCRIPA ab42/ttau L No Yes 58 1.4240069406182738E-2 NA
Visser PJ 2009 DESCRIPA ab42/ttau C No Yes 60 -5.7632212122421742E-2 NA
Visser PJ 2009 DESCRIPA ab42 L No Yes 58 NA 0.0449278
Xiong C 2016 ACS ptau C No Yes 209 -0.11 NA
Xiong C 2016 ACS PiB C No Yes 209 -0.15 NA
Xiong C 2016 ACS ptau L No Yes 209 -0.33 NA
Xiong C 2016 ACS PiB L No Yes 209 -0.27 NA
Xiong C 2016 ACS Ab42 C No Yes 209 -0.02 NA
Xiong C 2016 ACS Ab42 L No Yes 209 0.22 NA
Huang KL 2018 Taiwan Florbetapir C No Yes 11 NA -0.5600000
Insel PS 2019 BioFINDER ab42/ab40 C No Yes 329 4.5815407865608927E-2 NA
Janelidze S 2018 Mälmo Diet Cancer Study +BioFINDER ab42/ab40 C No Yes 508 0.11616246899850097 NA
Jansen WJ 2017 ABS PiB C No Yes 2908 7.0922545772955314E-2 NA
Jansen WJ 2017 ABS PiB C No Yes 2908 NA 0.0884409
Kang JM 2017 Gachon, Korea THK5351 C No Yes 43 NA -0.0677500
Kato M 2012 japan Florbetapir C No Yes 100 0.43692104500000001 NA
Kawas CH 2012 90 + study Florbetapir C No No 13 0.30979504447013906 NA
Kawas CH 2012 90 + study Florbetapir C No No 13 NA -0.2974385
Kawas CH 2012 90 + study Florbetapir L Yes No 7 0.95402399962294337 NA
Kawas CH 2012 90 + study Florbetapir L Yes No 6 NA 0.3272785
Kemppainen N 2017 FINGER PiB C No Yes 48 0.2069809037440738 NA
Kemppainen N 2017 FINGER PiB C No Yes 48 NA -0.0148763
Konijnenberg E 2019 European Information Framework for AD-PreclinAD Flutemetamol C No Yes 196 NA 0.0775520
Konijnenberg E 2019 European Information Framework for AD-PreclinAD Flutemetamol C No Yes 188 -5.2024094995183782E-2 NA
Konijnenberg E 2019 European Information Framework for AD-PreclinAD ab42/ab40 C No Yes 126 NA 0.0345742
Konijnenberg E 2019 European Information Framework for AD-PreclinAD ab42/ab40 C No Yes 126 5.3376051385375656E-2 NA
Kristofikova Z 2014 Czech Republic. Ab42 C No No 15 -0.17199999999999999 NA
Kristofikova Z 2014 Czech Republic. ptau C No No 15 -0.44500000000000001 NA
Lafirdeen ASM 2019 Multicenter France Ab42 C No Yes 3562 0.22187885542906988 NA
Leahey TM 2008 Kent USA Ab40 C No Yes 35 -0.34 NA
Liguori C 2017 Rome ab40/ptau/ttau C No No 50 NA 0.7250000
Lilamand M 2019 MAPT Florbetapir C No No 269 0.10568077493153641 NA
Lilamand M 2019 MAPT Florbetapir L Yes Yes 269 -0.69044882565599996 NA
Lilamand M 2019 MAPT Florbetapir L Yes Yes 269 NA -0.5013711
Lim YY 2015 Rhode Island Florbetapir L No No 63 6.0604144036885937E-2 NA
Lim YY 2015 Rhode Island Florbetapir C No No 63 -4.5207787830456279E-2 NA
Lim YY 2015 Rhode Island Florbetapir C No No 63 NA 0.1836993
Llado-Saz S 2015 Seville Florbetapir C No Yes 120 NA 0.0285706
Lu K 2019 DRC-UK Florbetapir C No Yes 502 -0.32500000000000001 NA
Lu K 2019 DRC-UK Florbetapir C Yes Yes 502 NA -0.1200000
Martikainen IK 2018 Finnish Geriatric Intervention Study PiB C No Yes 40 3.0417779310137852E-2 NA
Martikainen IK 2018 Finnish Geriatric Intervention Study PiB C No Yes 40 NA -0.1323262
McMillan CT 2016 PPMI ab42/ptau/ttau C No Yes 174 0.37270369729452846 NA
McMillan CT 2016 PPMI Ab42 C No Yes 174 NA -0.3465076
Mecca AP 2017 Yale PiB C No Yes 45 NA 0.1270000
Aschenbrenner AJ 2014 ADRC ptau C No Yes 113 NA -0.1300000
Aschenbrenner AJ 2014 ADRC Ab42 C No Yes 113 NA 0.0650000
Aschenbrenner AJ 2014 ADRC PiB C No Yes 113 NA -0.0550000
Berenguer RG 2014 Alicante Ab42 C No No 39 NA 0.3770000
Berenguer RG 2014 Alicante ab42/ptau C No No 39 NA -0.3440000
Besson FL 2015 IMAP 0 C No No 54 -0.131025450776667 NA
Besson FL 2015 IMAP 0 C No No 54 NA -0.1110823
Bilgel M 2018 BLSA PiB L Yes Yes 127 NA -0.0156667
Bilgel M 2018 BLSA PiB L Yes No 127 −0.073 NA
Casaletto KB 2017 Wisconsin ADRC ptau C No No 132 NA -0.1400000
Casaletto KB 2017 Wisconsin ADRC Ab42 C No No 132 NA -0.0200000
Chatterjee P 2019 KARVIAH Florbetaben C No No 100 -0.1245904061987721 NA
Cosentino SA 2010 WHICAP Ab42 L No Yes 481 -0.02 NA
Cosentino SA 2010 WHICAP ptau L No Yes 481 0.01 NA
Cosentino SA 2010 WHICAP Ab42 L Yes Yes 481 NA -0.0187500
Donohue MC 2017 ADNI Florbetapir, PiB C No No 445 0.15781752754953882 NA
Donohue MC 2017 ADNI Florbetapir, PiB L Yes Yes 445 0.25 NA
Donohue MC 2017 ADNI Florbetapir, PiB L Yes Yes 445 NA 0.2400000
Donohue MC 2017 ADNI Florbetapir, PiB L Yes Yes 445 -0.23 NA
Doraiswamy PM 2014 cohort Florbetapir C No No 69 -9.5012822661194873E-3 NA
Doraiswamy PM 2014 cohort Florbetapir C No No 69 NA 0.2334509
Doraiswamy PM 2014 cohort Florbetapir L Yes Yes 69 -0.2204826970771171 NA
Doraiswamy PM 2014 cohort Florbetapir L Yes Yes 69 NA 0.8284213
Dubois B 2018 INSIGHT Florbetapir C No Yes 318 0.12137734024004183 NA
Ecay-Torres M 2018 GAP Ab42 C No Yes 238 0 NA
Farrell ME 2017 DLBS Florbetapir L Yes No 123 NA -0.1212977
Farrell ME 2017 DLBS Florbetapir L Yes No 123 -9.2620498947187713E-2 NA
Farrell ME 2017 DLBS Florbetapir L No No 123 -1.3382959870743005E-2 NA
Franzmeier N 2018 DELCODE Florbetapir C No No 49 0.26130499504717453 NA
Franzmeier N 2018 DELCODE Florbetapir C No Yes 49 NA 0.1203751
Gangishetti U 2018 Emory, Penn, Washu Florbetapir C No No 44 0.10087105160045133 NA
Haapalinna F 2018 Finland Ab42 C No No 57 NA -0.2860000
Hamelin L 2018 IMABio3 PiB L No No 17 0.16728214978760356 NA
Hamelin L 2018 IMABio3 PiB C No No 17 0.13962189511877476 NA
Hamelin L 2018 IMABio3 PiB L No No 17 NA 0.2762891
Zhao Y 2017 GEM PiB C No No 175 NA 0.0819069
Yaffe K 2011 Healthy ABC Ab42 C No No 658 -3.2368919736014842E-2 NA
Yaffe K 2011 Healthy ABC Ab42 L No No 658 -0.11125370080159087 NA
Yaffe K 2011 Healthy ABC ab42/ab40 C No No 659 1.9852102269772645E-2 NA
Yaffe K 2011 Healthy ABC ab42/ab40 L No No 659 -8.0063087950813211E-2 NA
Meng Y 2015 Peking APL1b28 C No No 35 2.5055555555555539E-2 NA
Merrill DA 2013 UCLA FDDNP C No Yes 75 0 NA
Merrill DA 2013 UCLA FDDNP C No Yes 75 NA 0.0000000
Mielke MM 2017 MCSA PiB L Yes Yes 115 NA 0.0058281
Mielke MM 2017 MCSA PiB L Yes Yes 115 1.1655518211812148E-2 NA
Mielke MM 2012 MCSA PiB C No Yes 483 -7.9837760726405749E-2 NA
Mielke MM 2012 MCSA PiB C No Yes 483 NA -0.0509937
Mok VC 2016 Hong Kong PiB C No Yes 75 0.14004696424834814 NA
Mok VC 2016 Hong Kong PiB L No Yes 53 7.2671332373525077E-2 NA
Mok VC 2016 Hong Kong PiB L No Yes 53 0.1850980014974006 NA
Mok VC 2016 Hong Kong PiB L No Yes 53 0.32204560863404641 NA
Molinuevo JL 2014 Barcelona ab42/ptau/ttau C No Yes 38 0.17248843060677599 NA
Molinuevo JL 2014 Barcelona ab42/ptau/ttau C No Yes 38 NA 0.0722052
Moon YS 2011 Korean ab42 C No Yes 123 -0.25 NA
Moon YS 2011 Korean Ab42 C No Yes 123 0.99240974591340037 NA
Mueller SG 2018 UCSF Florbetapir C No No 51 0.15240009195007251 NA
Mueller SG 2018 UCSF Florbetapir C No No 51 NA 0.0639220
Mukaetova-Ladinska EB 2018 Leicester ptau-181 C No Yes 26 0 NA
Nakamura A 2018 MULNIAD PiB C No Yes 38 -1.8952300933460446E-2 NA
Nakamura A 2018 MULNIAD PiB C No Yes 38 NA -0.0141493
Nebes RD 2013 PITT PiB C No Yes 71 NA 0.1295316
Ossenkoppele R 2013 BACS PiB C No Yes 81 5.7224929398986019E-2 NA
Ossenkoppele R 2013 BACS PiB C No Yes 81 NA 0.0833677
Ossenkoppele R 2013 BACS PiB C No Yes 81 -0.22923566668277359 NA
Palmqvist S 2014 BioFINDER Flutemetamol C No Yes 118 -0.32 NA
Palmqvist S 2014 BioFINDER Flutemetamol C No Yes 118 NA -0.2800000
Hammers DB 2017 Utah Flutemetamol C No Yes 27 NA 0.7335282
Hammers DB 2017 Utah Flutemetamol C No Yes 27 0.728768833518325 NA
Hanseeuw BJ 2017 HABS PiB L No No 277 0.17772830136798845 NA
Hanseeuw BJ 2017 HABS PiB L No No 277 NA -0.0411176
Hanseeuw BJ 2017 HABS PiB C No No 277 0.13172254119910687 NA
Hanseeuw BJ 2017 HABS PiB C No No 277 NA 0.0337453
Harrington KD 2018 AIBL Florbetapir, PiB, FDDNP C No No 494 8.2934123085769973E-2 NA
Harrington KD 2018 AIBL Florbetapir, PiB, FDDNP C No Yes 494 NA -0.0572521
Harrington MG 2013 Pasadena ab42/ttau C No No 46 NA -0.0663486
Jacobs HIL 2018 HABS PiB C No Yes 256 7.5958082736127308E-2 NA
Jacobs HIL 2018 HABS PiB C No Yes 256 NA -0.0011623
Tolboom 2009 Amsterdam PiB C No Yes 13 -0.75 NA
Tolboom 2009 Amsterdam FDDNP C No Yes 13 -0.39 NA
Schott JM 2010 ADNI Ab42 C No Yes 105 0.13318228989215805 NA
Schott JM 2010 ADNI Ab42 C No Yes 105 NA -0.0303373
Lim YY 2018 AIBL Florbetapir, PiB, FDDNP C No No 447 0.20938035235433539 NA
Lim YY 2018 AIBL Florbetapir, PiB, FDDNP L Yes Yes 447 NA 0.1505543
  # stargazer(
  #   newtab,
  #   summary = FALSE,
  #   single.row = TRUE,
  #   no.space = TRUE,
  #   digits = 2,
  #   column.sep.width = "1pt",
  #   font.size = "small", 
  #   type = 'text',
  #   out= "summary.text"
  #   )

4 Meta analysis

4.1 Grouping by cognitive domain, amyloid and tau, cross and long

#random-effects-model for r values
#data_global <- subset(data, global_composite ==1)
data$memory_composite <- factor(data$memory_composite,
                                levels = c(0, 1),
                                labels = c("", "Memory"))
data$global_composite <- factor(data$global_composite,
                                levels = c(0, 1),
                                labels = c("", "Global"))
data$cross_long <- factor(data$cross_long,
                          levels = c("C", "L"),
                          labels = c("Baseline", "Followup"))
data$amyloid <- factor(data$amyloid,
                       levels = c(0, 1),
                       labels = c("", "Amyloid "))
data$tau <- factor(data$tau,
                   levels = c(0, 1),
                   labels = c("", "Tau"))
data$interaction <- factor(data$interaction,
                           levels = c(0, 1),
                           labels = c("", "Interaction"))
first <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data,
  n = data$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR",
 
  #The summary measure we want to calculate- fisher z
  byvar = paste(
    memory_composite,
    global_composite,
    cross_long,
    amyloid,
    tau
    
  ),
  #grouping variable
  print.byvar = gs("print.byvar")
) #print grouping variable

summary(first, digits = 2, pval=TRUE)
## Number of studies combined: k = 208
## 
##                         COR            95%-CI    t p-value
## Random effects model 0.0352 [-0.0128; 0.0830] 1.45  0.1497
## Prediction interval         [-0.5551; 0.6019]             
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1118 [0.0870; 0.1376]; tau = 0.3343 [0.2950; 0.3709];
##  I^2 = 93.3% [92.7%; 93.9%]; H = 3.88 [3.70; 4.06]
## 
## Quantifying residual heterogeneity:
##  I^2 = 92.9% [92.2%; 93.6%]; H = 3.77 [3.59; 3.95]
## 
## Test of heterogeneity:
##        Q d.f. p-value
##  3004.34  200       0
## 
## Results for subgroups (random effects model):
##                                         k     COR             95%-CI
## byvar = Memory  Baseline Amyloid       45  0.0677 [-0.0436;  0.1774]
## byvar = Memory  Baseline Amyloid  Tau  10 -0.0053 [-0.2564;  0.2465]
## byvar =  Global Baseline Amyloid       60  0.0840 [-0.0314;  0.1972]
## byvar =  Global Followup Amyloid       28 -0.0223 [-0.1450;  0.1011]
## byvar =  Global Baseline Amyloid  Tau  14  0.0669 [-0.0437;  0.1759]
## byvar =  Global Baseline  Tau           9 -0.0695 [-0.2260;  0.0906]
## byvar = Memory  Followup Amyloid       15  0.0384 [-0.1645;  0.2381]
## byvar =  Global Followup  Tau           5 -0.0632 [-0.2679;  0.1470]
## byvar =  Global Followup Amyloid  Tau   7 -0.0085 [-0.1632;  0.1467]
## byvar = Memory  Baseline  Tau           7 -0.0820 [-0.1286; -0.0351]
## byvar = Memory  Followup  Tau           3 -0.0660 [-0.3230;  0.2000]
## byvar = Memory  Followup Amyloid  Tau   5  0.0347 [-0.1546;  0.2217]
##                                        tau^2    tau       Q   I^2
## byvar = Memory  Baseline Amyloid      0.1233 0.3511  781.57 94.8%
## byvar = Memory  Baseline Amyloid  Tau 0.1146 0.3386   72.58 87.6%
## byvar =  Global Baseline Amyloid      0.1843 0.4293 1250.03 95.4%
## byvar =  Global Followup Amyloid      0.1081 0.3288  272.46 90.5%
## byvar =  Global Baseline Amyloid  Tau 0.0274 0.1654   85.41 84.8%
## byvar =  Global Baseline  Tau         0.0358 0.1892   15.35 54.4%
## byvar = Memory  Followup Amyloid      0.1204 0.3470  192.68 92.7%
## byvar =  Global Followup  Tau         0.0216 0.1470   23.11 82.7%
## byvar =  Global Followup Amyloid  Tau 0.0227 0.1506   60.49 90.1%
## byvar = Memory  Baseline  Tau         0.0004 0.0205    1.50  0.0%
## byvar = Memory  Followup  Tau         0.0075 0.0867    1.92  0.0%
## byvar = Memory  Followup Amyloid  Tau 0.0164 0.1280   21.87 81.7%
## 
## Test for subgroup differences (random effects model):
##                      Q d.f. p-value
## Between groups   20.23   11  0.0423
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations

4.2 Forest plot

  forest(
  first,
  print.I2.ci = TRUE,
  digits.sd = 2,
  layout = "subgroup",
  #layout = "subgroup",
  squaresize = 0.8,
  plotwidth = unit(8, "cm"),
  fontsize = 5,
  addspace = FALSE,
  xlab = "Fisher z",
  calcwidth.hetstat = TRUE
)

#option 1 -all studies
fun <- trimfill(first)
funnel(
  fun,
  pch = ifelse(fun$trimfill, 1, 16),
  level = 0.9,
  comb.random = FALSE
)

funnel(first, 
       main = "Standard Error")
funnel(first, 
       yaxis = "invvar")
funnel(first,
       yaxis = "size",
       main = "Sampling size",
       title = "hsjs")

#option 2 - only memory-amyloid, yaxis = 1/SE

data_memory_amyloid <-
  subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1")
memory_amyloid <-
  cbind(as.numeric(data$all_r), as.numeric(data$weight_se))
viz_funnel(
  memory_amyloid,
  y_axis = "precision",
  contours = TRUE,
  trim_and_fill = TRUE,
  trim_and_fill_side = "left",
  egger = TRUE
)

#option 3 - only memory-amyloid, yaxis = SE
viz_funnel(
  memory_amyloid,
  y_axis = "se",
  contours = TRUE,
  trim_and_fill = TRUE,
  trim_and_fill_side = "left",
  egger = TRUE
)

5 Using metafor package

5.1 Memory amyloid

data <- subset(data_full, table1 == 1, exclude != 0)
data_memory_amyloid <-
  subset(data, table1== "1" & data$memory_composite == "1" & data$amyloid == "1" & data$tau != "1")
dat <-
  escalc(
    measure = "ZCOR",
    ri = as.numeric(data_memory_amyloid$all_r),
    ni = as.numeric(data_memory_amyloid$total_nc),
    data = data_memory_amyloid
  ) #

# meta-analysis of the transformed correlations
res <- rma(yi, vi, data = dat, method = "DL")
print(res)
## 
## Random-Effects Model (k = 57; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0722 (SE = 0.0278)
## tau (square root of estimated tau^2 value):      0.2688
## I^2 (total heterogeneity / total variability):   94.37%
## H^2 (total variability / sampling variability):  17.77
## 
## Test for Heterogeneity:
## Q(df = 56) = 994.9870, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub 
##   0.0611  0.0391  1.5643  0.1177  -0.0155  0.1377    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# method="DL" = DerSimonian-Laird estimator
# method="HE" = Hedges estimator
# method="HS" = Hunter-Schmidt estimator
# method="SJ" = Sidik-Jonkman estimator
# method="ML" = maximum-likelihood estimator
# method="REML" = restricted maximum-likelihood estimator
# method="EB" = empirical Bayes estimator
# method="PM" = Paule-Mandel estimator
# method="GENQ" = generalized Q-statistic estimator

#funnel plot
funnel(
  res,
  yaxis = "sei",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE,
  studlab = TRUE
)
funnel(
  res,
  yaxis = "seinv",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE,
  studlab = TRUE
)
funnel(
  res,
  yaxis = "ni",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE,
  studlab = TRUE
)
funnel(
  res,
  yaxis = "ninv",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE,
  studlab = TRUE
)
funnel(
  res,
  yaxis = "sqrtni",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE,
  studlab = TRUE
)
funnel(
  res,
  yaxis = "wi",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE,
  studlab = TRUE
)

5.2 Memory tau

data_memory_tau <-
  subset(data, table1== "1" & data$memory_composite == "1" & data$tau == "1" & data$amyloid != "1" )
dat <-
  escalc(
    measure = "ZCOR",
    ri = as.numeric(data_memory_tau$all_r),
    ni = as.numeric(data_memory_tau$total_nc),
    data = data_memory_tau
  ) #

# meta-analysis of the transformed correlations
res <- rma(yi, vi, data = dat, method = "DL")
print(res)
## 
## Random-Effects Model (k = 9; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0044)
## tau (square root of estimated tau^2 value):      0
## I^2 (total heterogeneity / total variability):   0.00%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity:
## Q(df = 8) = 3.6994, p-val = 0.8832
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub 
##  -0.0691  0.0306  -2.2539  0.0242  -0.1291  -0.0090  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Standard funnel plot (Plot A)


funnel(
  res,
  yaxis = "sei",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "seinv",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "ni",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "ninv",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "sqrtni",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "wi",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)

5.3 Global Amyloid

data_global_amyloid <-
  subset(data, table1== "1" & data$global_composite == "1" & data$amyloid == "1" & data$tau != "1")
dat <-
  escalc(
    measure = "ZCOR",
    ri = as.numeric(data_global_amyloid$all_r),
    ni = as.numeric(data_global_amyloid$total_nc),
    data = data_global_amyloid
  ) #

# meta-analysis of the transformed correlations
res <- rma(yi, vi, data = dat, method = "DL")
print(res)
## 
## Random-Effects Model (k = 86; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0789 (SE = 0.0232)
## tau (square root of estimated tau^2 value):      0.2809
## I^2 (total heterogeneity / total variability):   94.64%
## H^2 (total variability / sampling variability):  18.65
## 
## Test for Heterogeneity:
## Q(df = 85) = 1585.1128, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub 
##   0.0515  0.0330  1.5608  0.1186  -0.0132  0.1162    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#funnel plot
funnel(
  res,
  yaxis = "sei",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "seinv",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "ni",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "ninv",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "sqrtni",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "wi",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)

5.4 Global tau

data_global_tau <-
  subset(data, table1== "1" & data$global_composite == "1" & data$tau == "1" & data$amyloid != "1")
dat <-
  escalc(
    measure = "ZCOR",
    ri = as.numeric(data_global_tau$all_r),
    ni = as.numeric(data_global_tau$total_nc),
    data = data_global_tau
  ) #

# meta-analysis of the transformed correlations
res <- rma(yi, vi, data = dat, method = "DL")
print(res)
## 
## Random-Effects Model (k = 13; tau^2 estimator: DL)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0163 (SE = 0.0109)
## tau (square root of estimated tau^2 value):      0.1276
## I^2 (total heterogeneity / total variability):   68.87%
## H^2 (total variability / sampling variability):  3.21
## 
## Test for Heterogeneity:
## Q(df = 12) = 38.5489, p-val = 0.0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub 
##  -0.0657  0.0458  -1.4356  0.1511  -0.1555  0.0240    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Standard funnel plot (Plot A)


funnel(
  res,
  yaxis = "sei",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "seinv",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "ni",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "ninv",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "sqrtni",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)
funnel(
  res,
  yaxis = "wi",
  level = c(90, 95, 99),
  shade = c("white", "gray55", "gray75"),
  refline = 0,
  legend = TRUE
)

6 Extra

6.1 Meta analysis domain, method, cross, long

#random-effects-model for r values
#data_global <- subset(data, global_composite ==1)
data$memory_composite <- factor(data$memory_composite,
                                levels = c(0, 1),
                                labels = c("", "Memory"))
data$global_composite <- factor(data$global_composite,
                                levels = c(0, 1),
                                labels = c("", "Global"))
data$cross_long <- factor(data$cross_long,
                          levels = c(1, 2),
                          labels = c("Baseline", "Followup"))
data$amyloid <- factor(data$amyloid,
                       levels = c(0, 1),
                       labels = c("", "Amyloid "))
data$tau <- factor(data$tau,
                   levels = c(0, 1),
                   labels = c("", "Tau"))
data$interaction <- factor(data$interaction,
                           levels = c(0, 1),
                           labels = c("", "Interaction"))
second <- metacor(
  as.numeric(all_r),
  #column with r values
  #pooled_se, #this tells R to use the seTE column to retrieve the standard error for each study
  data = data,
  n = data$total_nc,
  #sample sizes
  studlab = paste(author),
  # labels for each study
  comb.fixed = FALSE,
  #Whether to use a fixed-effects model
  comb.random = TRUE,
  #Whether to use a random-effects model
  method.tau = "SJ",
  #Which estimator to use for the between-study variance
  hakn = TRUE,
  #Which estimator to use for the between-study variance
  prediction = TRUE,
  #Whether to print a prediction interval for the effect of future studies based on present evidence
  sm = "ZCOR",
  #The summary measure we want to calculate- fisher z
  byvar = paste(
    memory_composite,
    global_composite,
    cross_long,
    method
  ),
  #grouping variable
  print.byvar = gs("print.byvar")
) #print grouping variable

print(second,  digits = 2)
##                         COR         95%-CI %W(random)
## Gu                     0.07 [ 0.00;  0.14]        0.6
## Horn MM                0.96 [ 0.95;  0.97]        0.5
## Hoscheidt SM           0.10 [-0.14;  0.32]        0.5
## Hosokawa C             0.76 [ 0.66;  0.84]        0.5
## Adamczuk K             0.23 [-0.04;  0.46]        0.5
## Adamczuk K             0.22 [-0.05;  0.45]        0.5
## Aizenstein HJ         -0.12 [-0.42;  0.21]        0.4
## Aizenstein HJ         -0.38 [-0.64; -0.05]        0.4
## Pomara N              -0.35 [-0.62; -0.01]        0.4
## Radanovic M            0.21 [-0.06;  0.45]        0.5
## Radanovic M            0.21 [-0.06;  0.45]        0.5
## Radanovic M           -0.28 [-0.51; -0.02]        0.5
## Rentz DM              -0.09 [-0.26;  0.08]        0.5
## Rentz DM              -0.15 [-0.31;  0.02]        0.5
## Rentz DM              -0.02 [-0.19;  0.15]        0.5
## Rentz DM              -0.12 [-0.28;  0.05]        0.5
## Rentz DM                 NA                       0.0
## Resnick SM            -0.14 [-0.40;  0.14]        0.5
## Resnick SM            -0.21 [-0.46;  0.07]        0.5
## Roberts RO             0.04 [-0.01;  0.09]        0.6
## Roberts RO             0.04 [-0.01;  0.09]        0.6
## Roberts RO             0.25 [ 0.20;  0.29]        0.6
## Roberts RO             0.16 [ 0.11;  0.21]        0.6
## Roe CM                 0.05 [-0.04;  0.15]        0.6
## Roe CM                 0.09 [ 0.00;  0.19]        0.6
## Roe CM                 0.07 [-0.03;  0.16]        0.6
## Rosenberg PB          -0.15 [-0.62;  0.39]        0.3
## Rosenberg PB           0.16 [-0.38;  0.62]        0.3
## Sanabria A               NA                       0.0
## Schindler SE           0.07 [-0.06;  0.20]        0.5
## Schindler SE           0.08 [-0.05;  0.20]        0.5
## Schindler SE          -0.03 [-0.16;  0.10]        0.5
## Schindler SE           0.00 [-0.13;  0.13]        0.5
## Schindler SE          -0.10 [-0.22;  0.03]        0.5
## Schindler SE          -0.07 [-0.20;  0.06]        0.5
## Schindler SE           0.04 [-0.09;  0.17]        0.5
## Schindler SE           0.01 [-0.12;  0.14]        0.5
## Schindler SE          -0.02 [-0.15;  0.11]        0.5
## Schindler SE          -0.02 [-0.15;  0.11]        0.5
## Schindler SE          -0.07 [-0.20;  0.06]        0.5
## Schindler SE          -0.02 [-0.15;  0.11]        0.5
## Sala-Llonch R         -0.05 [-0.26;  0.16]        0.5
## Sala-Llonch R         -0.05 [-0.25;  0.16]        0.5
## Sala-Llonch R          0.11 [-0.10;  0.31]        0.5
## Sierra-Rio A           0.05 [-0.22;  0.31]        0.5
## Song Z                 0.13 [-0.09;  0.34]        0.5
## Song Z                 0.12 [-0.10;  0.33]        0.5
## Song Z                 0.00 [-0.28;  0.27]        0.5
## Song Z                -0.02 [-0.30;  0.26]        0.5
## Stomrud E              0.08 [-0.25;  0.39]        0.4
## Stomrud E             -0.03 [-0.35;  0.30]        0.4
## Stomrud E              0.06 [-0.27;  0.38]        0.4
## Stomrud E             -0.23 [-0.52;  0.10]        0.4
## Stomrud E             -0.13 [-0.44;  0.20]        0.4
## Stomrud E             -0.27 [-0.54;  0.06]        0.4
## Timmers T             -0.16 [-0.34;  0.03]        0.5
## Timmers T             -0.06 [-0.24;  0.13]        0.5
## Timmers T             -0.03 [-0.22;  0.16]        0.5
## Timmers T             -0.13 [-0.31;  0.06]        0.5
## Storandt M             0.12 [-0.05;  0.28]        0.5
## Storandt M             0.00 [-0.16;  0.17]        0.5
## Storandt M             0.00 [-0.16;  0.17]        0.5
## Tardif CL             -0.11 [-0.39;  0.19]        0.5
## Tardif CL              0.36 [ 0.07;  0.59]        0.5
## Teipel SJ             -0.11 [-0.22;  0.00]        0.5
## Teipel SJ             -0.11 [-0.22;  0.00]        0.5
## van Bergen JMG        -0.04 [-0.23;  0.14]        0.5
## van Harten AC         -0.01 [-0.18;  0.16]        0.5
## van Harten AC         -0.07 [-0.23;  0.11]        0.5
## van Harten AC         -0.04 [-0.21;  0.13]        0.5
## van Harten AC         -0.06 [-0.23;  0.11]        0.5
## van Harten AC          0.00 [-0.17;  0.17]        0.5
## van Harten AC         -0.14 [-0.30;  0.03]        0.5
## van Harten AC         -0.14 [-0.31;  0.03]        0.5
## van Harten AC         -0.04 [-0.21;  0.13]        0.5
## van Harten AC         -0.01 [-0.18;  0.16]        0.5
## van Harten AC         -0.15 [-0.31;  0.02]        0.5
## van Harten AC         -0.14 [-0.31;  0.03]        0.5
## van Harten AC         -0.06 [-0.23;  0.11]        0.5
## Villemagne VL            NA                       0.0
## Visser PJ              0.01 [-0.24;  0.27]        0.5
## Visser PJ             -0.06 [-0.31;  0.20]        0.5
## Visser PJ              0.04 [-0.22;  0.30]        0.5
## Xiong C               -0.11 [-0.24;  0.03]        0.5
## Xiong C               -0.15 [-0.28; -0.01]        0.5
## Xiong C               -0.33 [-0.45; -0.20]        0.5
## Xiong C               -0.27 [-0.39; -0.14]        0.5
## Xiong C               -0.02 [-0.16;  0.12]        0.5
## Xiong C                0.22 [ 0.09;  0.35]        0.5
## Huang KL              -0.56 [-0.87;  0.06]        0.3
## Insel PS               0.05 [-0.06;  0.15]        0.5
## Janelidze S            0.12 [ 0.03;  0.20]        0.6
## Jansen WJ              0.07 [ 0.03;  0.11]        0.6
## Jansen WJ              0.09 [ 0.05;  0.12]        0.6
## Kang JM               -0.07 [-0.36;  0.24]        0.5
## Kato M                 0.44 [ 0.26;  0.58]        0.5
## Kawas CH               0.31 [-0.29;  0.74]        0.3
## Kawas CH              -0.30 [-0.73;  0.30]        0.3
## Kawas CH               0.95 [ 0.71;  0.99]        0.2
## Kawas CH               0.33 [-0.66;  0.90]        0.1
## Kemppainen N           0.21 [-0.08;  0.46]        0.5
## Kemppainen N          -0.01 [-0.30;  0.27]        0.5
## Konijnenberg E         0.08 [-0.06;  0.22]        0.5
## Konijnenberg E        -0.05 [-0.19;  0.09]        0.5
## Konijnenberg E         0.03 [-0.14;  0.21]        0.5
## Konijnenberg E         0.05 [-0.12;  0.23]        0.5
## Kristofikova Z        -0.17 [-0.63;  0.37]        0.3
## Kristofikova Z        -0.45 [-0.78;  0.09]        0.3
## Lafirdeen ASM          0.22 [ 0.19;  0.25]        0.6
## Leahey TM             -0.34 [-0.60; -0.01]        0.4
## Liguori C              0.72 [ 0.56;  0.83]        0.5
## Lilamand M             0.11 [-0.01;  0.22]        0.5
## Lilamand M            -0.69 [-0.75; -0.62]        0.5
## Lilamand M            -0.50 [-0.59; -0.41]        0.5
## Lim YY                 0.06 [-0.19;  0.30]        0.5
## Lim YY                -0.05 [-0.29;  0.20]        0.5
## Lim YY                 0.18 [-0.07;  0.41]        0.5
## Llado-Saz S            0.03 [-0.15;  0.21]        0.5
## Lu K                  -0.32 [-0.40; -0.24]        0.6
## Lu K                  -0.12 [-0.21; -0.03]        0.6
## Martikainen IK         0.03 [-0.28;  0.34]        0.5
## Martikainen IK        -0.13 [-0.43;  0.19]        0.5
## McMillan CT            0.37 [ 0.24;  0.49]        0.5
## McMillan CT           -0.35 [-0.47; -0.21]        0.5
## Mecca AP               0.13 [-0.17;  0.41]        0.5
## Aschenbrenner AJ      -0.13 [-0.31;  0.06]        0.5
## Aschenbrenner AJ       0.06 [-0.12;  0.25]        0.5
## Aschenbrenner AJ      -0.05 [-0.24;  0.13]        0.5
## Berenguer RG           0.38 [ 0.07;  0.62]        0.5
## Berenguer RG          -0.34 [-0.59; -0.03]        0.5
## Besson FL             -0.13 [-0.39;  0.14]        0.5
## Besson FL             -0.11 [-0.37;  0.16]        0.5
## Bilgel M              -0.02 [-0.19;  0.16]        0.5
## Bilgel M                 NA                       0.0
## Casaletto KB          -0.14 [-0.30;  0.03]        0.5
## Casaletto KB          -0.02 [-0.19;  0.15]        0.5
## Chatterjee P          -0.12 [-0.31;  0.07]        0.5
## Cosentino SA          -0.02 [-0.11;  0.07]        0.6
## Cosentino SA           0.01 [-0.08;  0.10]        0.6
## Cosentino SA          -0.02 [-0.11;  0.07]        0.6
## Donohue MC             0.16 [ 0.07;  0.25]        0.6
## Donohue MC             0.25 [ 0.16;  0.34]        0.6
## Donohue MC             0.24 [ 0.15;  0.33]        0.6
## Donohue MC            -0.23 [-0.32; -0.14]        0.6
## Doraiswamy PM         -0.01 [-0.25;  0.23]        0.5
## Doraiswamy PM          0.23 [ 0.00;  0.45]        0.5
## Doraiswamy PM         -0.22 [-0.43;  0.02]        0.5
## Doraiswamy PM          0.83 [ 0.74;  0.89]        0.5
## Dubois B               0.12 [ 0.01;  0.23]        0.5
## Ecay-Torres M          0.00 [-0.13;  0.13]        0.5
## Farrell ME            -0.12 [-0.29;  0.06]        0.5
## Farrell ME            -0.09 [-0.27;  0.09]        0.5
## Farrell ME            -0.01 [-0.19;  0.16]        0.5
## Franzmeier N           0.26 [-0.02;  0.51]        0.5
## Franzmeier N           0.12 [-0.17;  0.39]        0.5
## Gangishetti U          0.10 [-0.20;  0.39]        0.5
## Haapalinna F          -0.29 [-0.51; -0.03]        0.5
## Hamelin L              0.17 [-0.34;  0.60]        0.3
## Hamelin L              0.14 [-0.37;  0.58]        0.3
## Hamelin L              0.28 [-0.24;  0.67]        0.3
## Zhao Y                 0.08 [-0.07;  0.23]        0.5
## Yaffe K               -0.03 [-0.11;  0.04]        0.6
## Yaffe K               -0.11 [-0.19; -0.04]        0.6
## Yaffe K                0.02 [-0.06;  0.10]        0.6
## Yaffe K               -0.08 [-0.16;  0.00]        0.6
## Meng Y                 0.03 [-0.31;  0.36]        0.4
## Merrill DA               NA                       0.0
## Merrill DA               NA                       0.0
## Mielke MM              0.01 [-0.18;  0.19]        0.5
## Mielke MM              0.01 [-0.17;  0.19]        0.5
## Mielke MM             -0.08 [-0.17;  0.01]        0.6
## Mielke MM             -0.05 [-0.14;  0.04]        0.6
## Mok VC                 0.14 [-0.09;  0.36]        0.5
## Mok VC                 0.07 [-0.20;  0.34]        0.5
## Mok VC                 0.19 [-0.09;  0.43]        0.5
## Mok VC                 0.32 [ 0.06;  0.54]        0.5
## Molinuevo JL           0.17 [-0.16;  0.47]        0.4
## Molinuevo JL           0.07 [-0.25;  0.38]        0.4
## Moon YS               -0.25 [-0.41; -0.08]        0.5
## Moon YS                0.99 [ 0.99;  0.99]        0.5
## Mueller SG             0.15 [-0.13;  0.41]        0.5
## Mueller SG             0.06 [-0.22;  0.33]        0.5
## Mukaetova-Ladinska EB    NA                       0.0
## Nakamura A            -0.02 [-0.34;  0.30]        0.4
## Nakamura A            -0.01 [-0.33;  0.31]        0.4
## Nebes RD               0.13 [-0.11;  0.35]        0.5
## Ossenkoppele R         0.06 [-0.16;  0.27]        0.5
## Ossenkoppele R         0.08 [-0.14;  0.30]        0.5
## Ossenkoppele R        -0.23 [-0.43; -0.01]        0.5
## Palmqvist S           -0.32 [-0.47; -0.15]        0.5
## Palmqvist S           -0.28 [-0.44; -0.10]        0.5
## Hammers DB             0.73 [ 0.49;  0.87]        0.4
## Hammers DB             0.73 [ 0.48;  0.87]        0.4
## Hanseeuw BJ            0.18 [ 0.06;  0.29]        0.5
## Hanseeuw BJ           -0.04 [-0.16;  0.08]        0.5
## Hanseeuw BJ            0.13 [ 0.01;  0.25]        0.5
## Hanseeuw BJ            0.03 [-0.08;  0.15]        0.5
## Harrington KD          0.08 [-0.01;  0.17]        0.6
## Harrington KD         -0.06 [-0.14;  0.03]        0.6
## Harrington MG         -0.07 [-0.35;  0.23]        0.5
## Jacobs HIL             0.08 [-0.05;  0.20]        0.5
## Jacobs HIL             0.00 [-0.12;  0.12]        0.5
## Tolboom               -0.75 [-0.92; -0.34]        0.3
## Tolboom               -0.39 [-0.77;  0.21]        0.3
## Schott JM              0.13 [-0.06;  0.32]        0.5
## Schott JM             -0.03 [-0.22;  0.16]        0.5
## Lim YY                 0.21 [ 0.12;  0.30]        0.6
## Lim YY                 0.15 [ 0.06;  0.24]        0.6
##                                                    byvar
## Gu                                       Memory  NA Ab42
## Horn MM                                   Memory  NA PiB
## Hoscheidt SM              Memory  NA ab42/ab40/ptau/ttau
## Hosokawa C                                 Global NA PiB
## Adamczuk K                        Global NA Flutemetamol
## Adamczuk K                       Memory  NA Flutemetamol
## Aizenstein HJ                              Global NA PiB
## Aizenstein HJ                             Memory  NA PiB
## Pomara N                                  Global NA Ab42
## Radanovic M                          Global NA ab42/ptau
## Radanovic M                               Global NA Ab42
## Radanovic M                               Global NA ptau
## Rentz DM                                   Global NA PiB
## Rentz DM                                  Global NA T807
## Rentz DM                             Global NA PiB, T807
## Rentz DM                             Global NA PiB, T807
## Rentz DM                                  Memory  NA PiB
## Resnick SM                                Memory  NA PiB
## Resnick SM                                 Global NA PiB
## Roberts RO                                 Global NA PiB
## Roberts RO                                Memory  NA PiB
## Roberts RO                                 Global NA PiB
## Roberts RO                                Memory  NA PiB
## Roe CM                       Global NA Florbetapir, ptau
## Roe CM                  Global NA Florbetapir, ab42/ptau
## Roe CM                       Global NA Florbetapir, ab42
## Rosenberg PB                      Memory  NA Florbetapir
## Rosenberg PB                       Global NA Florbetapir
## Sanabria A                                Memory  NA PiB
## Schindler SE                             Memory  NA Ab42
## Schindler SE                              Global NA Ab42
## Schindler SE                             Memory  NA ptau
## Schindler SE                              Global NA ptau
## Schindler SE                        Memory  NA ab42/ptau
## Schindler SE                         Global NA ab42/ptau
## Schindler SE                              Global NA Ab42
## Schindler SE                             Memory  NA Ab42
## Schindler SE                              Global NA ptau
## Schindler SE                             Memory  NA ptau
## Schindler SE                         Global NA ab42/ptau
## Schindler SE                        Memory  NA ab42/ptau
## Sala-Llonch R                            Memory  NA Ab42
## Sala-Llonch R                             Global NA Ab42
## Sala-Llonch R                             Global NA Ab42
## Sierra-Rio A                         Global NA ab42/ptau
## Song Z                            Memory  NA Florbetapir
## Song Z                             Global NA Florbetapir
## Song Z                            Memory  NA Florbetapir
## Song Z                             Global NA Florbetapir
## Stomrud E                                 Global NA Ab42
## Stomrud E                                 Global NA ptau
## Stomrud E                                 Global NA ptau
## Stomrud E                                 Global NA Ab42
## Stomrud E                                Memory  NA ptau
## Stomrud E                                Memory  NA ptau
## Timmers T                          Global NA Florbetapir
## Timmers T                         Memory  NA Florbetapir
## Timmers T                          Global NA Florbetapir
## Timmers T                         Memory  NA Florbetapir
## Storandt M                                 Global NA PiB
## Storandt M                                 Global NA PiB
## Storandt M                                Memory  NA PiB
## Tardif CL                                 Global NA Ab42
## Tardif CL                                 Global NA ttau
## Teipel SJ                          Global NA Florbetapir
## Teipel SJ                         Memory  NA Florbetapir
## van Bergen JMG                    Global NA Flutemetamol
## van Harten AC                             Global NA Ab42
## van Harten AC                            Memory  NA ptau
## van Harten AC                             Global NA ptau
## van Harten AC                       Memory  NA ab42/ttau
## van Harten AC                        Global NA ab42/ttau
## van Harten AC                            Memory  NA Ab42
## van Harten AC                             Global NA Ab42
## van Harten AC                            Memory  NA ptau
## van Harten AC                             Global NA ptau
## van Harten AC                       Memory  NA ab42/ttau
## van Harten AC                        Global NA ab42/ttau
## van Harten AC                            Memory  NA Ab42
## Villemagne VL                      Memory  NA 18F-THK523
## Visser PJ                            Global NA ab42/ttau
## Visser PJ                            Global NA ab42/ttau
## Visser PJ                                Memory  NA ab42
## Xiong C                                   Global NA ptau
## Xiong C                                    Global NA PiB
## Xiong C                                   Global NA ptau
## Xiong C                                    Global NA PiB
## Xiong C                                   Global NA Ab42
## Xiong C                                   Global NA Ab42
## Huang KL                          Memory  NA Florbetapir
## Insel PS                             Global NA ab42/ab40
## Janelidze S                          Global NA ab42/ab40
## Jansen WJ                                  Global NA PiB
## Jansen WJ                                 Memory  NA PiB
## Kang JM                               Memory  NA THK5351
## Kato M                             Global NA Florbetapir
## Kawas CH                           Global NA Florbetapir
## Kawas CH                          Memory  NA Florbetapir
## Kawas CH                           Global NA Florbetapir
## Kawas CH                          Memory  NA Florbetapir
## Kemppainen N                               Global NA PiB
## Kemppainen N                              Memory  NA PiB
## Konijnenberg E                   Memory  NA Flutemetamol
## Konijnenberg E                    Global NA Flutemetamol
## Konijnenberg E                      Memory  NA ab42/ab40
## Konijnenberg E                       Global NA ab42/ab40
## Kristofikova Z                            Global NA Ab42
## Kristofikova Z                            Global NA ptau
## Lafirdeen ASM                             Global NA Ab42
## Leahey TM                                 Global NA Ab40
## Liguori C                      Memory  NA ab40/ptau/ttau
## Lilamand M                         Global NA Florbetapir
## Lilamand M                         Global NA Florbetapir
## Lilamand M                        Memory  NA Florbetapir
## Lim YY                             Global NA Florbetapir
## Lim YY                             Global NA Florbetapir
## Lim YY                            Memory  NA Florbetapir
## Llado-Saz S                       Memory  NA Florbetapir
## Lu K                               Global NA Florbetapir
## Lu K                              Memory  NA Florbetapir
## Martikainen IK                             Global NA PiB
## Martikainen IK                            Memory  NA PiB
## McMillan CT                     Global NA ab42/ptau/ttau
## McMillan CT                              Memory  NA Ab42
## Mecca AP                                  Memory  NA PiB
## Aschenbrenner AJ                         Memory  NA ptau
## Aschenbrenner AJ                         Memory  NA Ab42
## Aschenbrenner AJ                          Memory  NA PiB
## Berenguer RG                             Memory  NA Ab42
## Berenguer RG                        Memory  NA ab42/ptau
## Besson FL                                    Global NA 0
## Besson FL                                   Memory  NA 0
## Bilgel M                                  Memory  NA PiB
## Bilgel M                                   Global NA PiB
## Casaletto KB                             Memory  NA ptau
## Casaletto KB                             Memory  NA Ab42
## Chatterjee P                       Global NA Florbetaben
## Cosentino SA                              Global NA Ab42
## Cosentino SA                              Global NA ptau
## Cosentino SA                             Memory  NA Ab42
## Donohue MC                    Global NA Florbetapir, PiB
## Donohue MC                    Global NA Florbetapir, PiB
## Donohue MC                   Memory  NA Florbetapir, PiB
## Donohue MC                    Global NA Florbetapir, PiB
## Doraiswamy PM                      Global NA Florbetapir
## Doraiswamy PM                     Memory  NA Florbetapir
## Doraiswamy PM                      Global NA Florbetapir
## Doraiswamy PM                     Memory  NA Florbetapir
## Dubois B                           Global NA Florbetapir
## Ecay-Torres M                             Global NA Ab42
## Farrell ME                        Memory  NA Florbetapir
## Farrell ME                         Global NA Florbetapir
## Farrell ME                         Global NA Florbetapir
## Franzmeier N                       Global NA Florbetapir
## Franzmeier N                      Memory  NA Florbetapir
## Gangishetti U                      Global NA Florbetapir
## Haapalinna F                             Memory  NA Ab42
## Hamelin L                                  Global NA PiB
## Hamelin L                                  Global NA PiB
## Hamelin L                                 Memory  NA PiB
## Zhao Y                                    Memory  NA PiB
## Yaffe K                                   Global NA Ab42
## Yaffe K                                   Global NA Ab42
## Yaffe K                              Global NA ab42/ab40
## Yaffe K                              Global NA ab42/ab40
## Meng Y                                 Global NA APL1b28
## Merrill DA                               Global NA FDDNP
## Merrill DA                              Memory  NA FDDNP
## Mielke MM                                 Memory  NA PiB
## Mielke MM                                  Global NA PiB
## Mielke MM                                  Global NA PiB
## Mielke MM                                 Memory  NA PiB
## Mok VC                                     Global NA PiB
## Mok VC                                     Global NA PiB
## Mok VC                                     Global NA PiB
## Mok VC                                     Global NA PiB
## Molinuevo JL                    Global NA ab42/ptau/ttau
## Molinuevo JL                   Memory  NA ab42/ptau/ttau
## Moon YS                                   Global NA ab42
## Moon YS                                   Global NA Ab42
## Mueller SG                         Global NA Florbetapir
## Mueller SG                        Memory  NA Florbetapir
## Mukaetova-Ladinska EB                 Global NA ptau-181
## Nakamura A                                 Global NA PiB
## Nakamura A                                Memory  NA PiB
## Nebes RD                                  Memory  NA PiB
## Ossenkoppele R                             Global NA PiB
## Ossenkoppele R                            Memory  NA PiB
## Ossenkoppele R                             Global NA PiB
## Palmqvist S                       Global NA Flutemetamol
## Palmqvist S                      Memory  NA Flutemetamol
## Hammers DB                       Memory  NA Flutemetamol
## Hammers DB                        Global NA Flutemetamol
## Hanseeuw BJ                                Global NA PiB
## Hanseeuw BJ                               Memory  NA PiB
## Hanseeuw BJ                                Global NA PiB
## Hanseeuw BJ                               Memory  NA PiB
## Harrington KD          Global NA Florbetapir, PiB, FDDNP
## Harrington KD         Memory  NA Florbetapir, PiB, FDDNP
## Harrington MG                       Memory  NA ab42/ttau
## Jacobs HIL                                 Global NA PiB
## Jacobs HIL                                Memory  NA PiB
## Tolboom                                    Global NA PiB
## Tolboom                                  Global NA FDDNP
## Schott JM                                 Global NA Ab42
## Schott JM                                Memory  NA Ab42
## Lim YY                 Global NA Florbetapir, PiB, FDDNP
## Lim YY                Memory  NA Florbetapir, PiB, FDDNP
## 
## Number of studies combined: k = 208
## 
##                       COR        95%-CI    t p-value
## Random effects model 0.04 [-0.01; 0.08] 1.45  0.1497
## Prediction interval       [-0.56; 0.60]             
## 
## Quantifying heterogeneity:
##  tau^2 = 0.1118 [0.0870; 0.1376]; tau = 0.3343 [0.2950; 0.3709];
##  I^2 = 93.3% [92.7%; 93.9%]; H = 3.88 [3.70; 4.06]
## 
## Quantifying residual heterogeneity:
##  I^2 = 93.6% [92.9%; 94.2%]; H = 3.95 [3.76; 4.15]
## 
## Test of heterogeneity:
##        Q d.f. p-value
##  3004.34  200       0
## 
## Results for subgroups (random effects model):
##                                              k   COR         95%-CI  tau^2
## byvar = Memory  NA Ab42                     13 -0.03 [-0.13;  0.07] 0.0225
## byvar = Memory  NA PiB                      24  0.10 [-0.08;  0.28] 0.1770
## byvar = Memory  NA ab42/ab40/ptau/ttau       1  0.10 [-0.14;  0.32]     --
## byvar =  Global NA PiB                      29  0.05 [-0.05;  0.16] 0.0676
## byvar =  Global NA Flutemetamol              5  0.12 [-0.43;  0.60] 0.1976
## byvar = Memory  NA Flutemetamol              4  0.21 [-0.53;  0.77] 0.2300
## byvar =  Global NA Ab42                     21  0.13 [-0.16;  0.39] 0.3842
## byvar =  Global NA ab42/ptau                 4 -0.01 [-0.19;  0.18] 0.0087
## byvar =  Global NA ptau                     11 -0.09 [-0.18;  0.01] 0.0155
## byvar =  Global NA T807                      1 -0.15 [-0.31;  0.02]     --
## byvar =  Global NA PiB, T807                 2 -0.07 [-0.59;  0.49] 0.0011
## byvar =  Global NA Florbetapir, ptau         1  0.05 [-0.04;  0.15]     --
## byvar =  Global NA Florbetapir, ab42/ptau    1  0.09 [-0.00;  0.19]     --
## byvar =  Global NA Florbetapir, ab42         1  0.07 [-0.03;  0.16]     --
## byvar = Memory  NA Florbetapir              18  0.01 [-0.17;  0.20] 0.1203
## byvar =  Global NA Florbetapir              22  0.02 [-0.14;  0.19] 0.1414
## byvar = Memory  NA ptau                      8 -0.07 [-0.13; -0.02] 0.0020
## byvar = Memory  NA ab42/ptau                 3 -0.11 [-0.45;  0.25] 0.0166
## byvar =  Global NA ttau                      1  0.36 [ 0.07;  0.59]     --
## byvar = Memory  NA ab42/ttau                 3 -0.10 [-0.23;  0.04] 0.0005
## byvar =  Global NA ab42/ttau                 4 -0.06 [-0.18;  0.07] 0.0015
## byvar = Memory  NA 18F-THK523                1    NA                    --
## byvar = Memory  NA ab42                      1  0.04 [-0.22;  0.30]     --
## byvar =  Global NA ab42/ab40                 5  0.03 [-0.07;  0.12] 0.0036
## byvar = Memory  NA THK5351                   1 -0.07 [-0.36;  0.24]     --
## byvar = Memory  NA ab42/ab40                 1  0.03 [-0.14;  0.21]     --
## byvar =  Global NA Ab40                      1 -0.34 [-0.60; -0.01]     --
## byvar = Memory  NA ab40/ptau/ttau            1  0.72 [ 0.56;  0.83]     --
## byvar =  Global NA ab42/ptau/ttau            2  0.32 [-0.73;  0.92] 0.0096
## byvar =  Global NA 0                         1 -0.13 [-0.39;  0.14]     --
## byvar = Memory  NA 0                         1 -0.11 [-0.37;  0.16]     --
## byvar =  Global NA Florbetaben               1 -0.12 [-0.31;  0.07]     --
## byvar =  Global NA Florbetapir, PiB          3  0.06 [-0.53;  0.61] 0.0641
## byvar = Memory  NA Florbetapir, PiB          1  0.24 [ 0.15;  0.33]     --
## byvar =  Global NA APL1b28                   1  0.03 [-0.31;  0.36]     --
## byvar =  Global NA FDDNP                     2 -0.39 [-0.39; -0.39]     --
## byvar = Memory  NA FDDNP                     1    NA                    --
## byvar = Memory  NA ab42/ptau/ttau            1  0.07 [-0.25;  0.38]     --
## byvar =  Global NA ab42                      1 -0.25 [-0.41; -0.08]     --
## byvar =  Global NA ptau-181                  1    NA                    --
## byvar =  Global NA Florbetapir, PiB, FDDNP   2  0.15 [-0.59;  0.75] 0.0055
## byvar = Memory  NA Florbetapir, PiB, FDDNP   2  0.05 [-0.86;  0.88] 0.0183
##                                               tau      Q   I^2
## byvar = Memory  NA Ab42                    0.1499  41.20 70.9%
## byvar = Memory  NA PiB                     0.4207 693.19 97.0%
## byvar = Memory  NA ab42/ab40/ptau/ttau         --   0.00    --
## byvar =  Global NA PiB                     0.2600 208.95 87.1%
## byvar =  Global NA Flutemetamol            0.4445  36.11 88.9%
## byvar = Memory  NA Flutemetamol            0.4796  33.59 91.1%
## byvar =  Global NA Ab42                    0.6199 986.46 98.0%
## byvar =  Global NA ab42/ptau               0.0932   3.98 24.7%
## byvar =  Global NA ptau                    0.1244  25.91 61.4%
## byvar =  Global NA T807                        --   0.00    --
## byvar =  Global NA PiB, T807               0.0327   0.60  0.0%
## byvar =  Global NA Florbetapir, ptau           --   0.00    --
## byvar =  Global NA Florbetapir, ab42/ptau      --   0.00    --
## byvar =  Global NA Florbetapir, ab42           --   0.00    --
## byvar = Memory  NA Florbetapir             0.3469 188.40 91.0%
## byvar =  Global NA Florbetapir             0.3760 273.15 92.3%
## byvar = Memory  NA ptau                    0.0449   3.70  0.0%
## byvar = Memory  NA ab42/ptau               0.1287   3.65 45.2%
## byvar =  Global NA ttau                        --   0.00    --
## byvar = Memory  NA ab42/ttau               0.0214   0.62  0.0%
## byvar =  Global NA ab42/ttau               0.0389   1.69  0.0%
## byvar = Memory  NA 18F-THK523                  --     --    --
## byvar = Memory  NA ab42                        --   0.00    --
## byvar =  Global NA ab42/ab40               0.0598  11.66 65.7%
## byvar = Memory  NA THK5351                     --   0.00    --
## byvar = Memory  NA ab42/ab40                   --   0.00    --
## byvar =  Global NA Ab40                        --   0.00    --
## byvar = Memory  NA ab40/ptau/ttau              --   0.00    --
## byvar =  Global NA ab42/ptau/ttau          0.0980   1.37 27.1%
## byvar =  Global NA 0                           --   0.00    --
## byvar = Memory  NA 0                           --   0.00    --
## byvar =  Global NA Florbetaben                 --   0.00    --
## byvar =  Global NA Florbetapir, PiB        0.2531  59.48 96.6%
## byvar = Memory  NA Florbetapir, PiB            --   0.00    --
## byvar =  Global NA APL1b28                     --   0.00    --
## byvar =  Global NA FDDNP                       --   0.00    --
## byvar = Memory  NA FDDNP                       --     --    --
## byvar = Memory  NA ab42/ptau/ttau              --   0.00    --
## byvar =  Global NA ab42                        --   0.00    --
## byvar =  Global NA ptau-181                    --     --    --
## byvar =  Global NA Florbetapir, PiB, FDDNP 0.0744   3.90 74.4%
## byvar = Memory  NA Florbetapir, PiB, FDDNP 0.1351  10.19 90.2%
## 
## Test for subgroup differences (random effects model):
##                       Q d.f.  p-value
## Between groups   149.94   41 < 0.0001
## 
## Details on meta-analytical method:
## - Inverse variance method
## - Sidik-Jonkman estimator for tau^2
## - Q-profile method for confidence interval of tau^2 and tau
## - Hartung-Knapp adjustment for random effects model
## - Fisher's z transformation of correlations