Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation/Stroop.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)

Stroop Color-Word Test - Psychological Aggression

Model 1

SCWTlog1 <- glm(PsychAggress ~ HIscore, data=Stroop,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ HIscore, family = "binomial", data = Stroop)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1581   0.5161   0.5480   0.5782   0.7187  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.1499     0.4743   2.425   0.0153 *
## HIscore       1.2230     0.9230   1.325   0.1852  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 449.84  on 540  degrees of freedom
## Residual deviance: 448.10  on 539  degrees of freedom
## AIC: 452.1
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                  2.5 %   97.5 %
## (Intercept)  0.2400607 2.104197
## HIscore     -0.5986857 3.027263
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                   OR     2.5 %    97.5 %
## (Intercept) 3.157877 1.2713263  8.200514
## HIscore     3.397350 0.5495334 20.640652
plot(predictorEffect("HIscore",SCWTlog1))

########Compare to null model 
#Difference in Deviance
with(SCWTlog1,null.deviance - deviance)
## [1] 1.740722
#Degrees of freedom for the difference between two models
with(SCWTlog1,df.null - df.residual)
## [1] 1
#p-value
with(SCWTlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1870473

Model 2

SCWTlog2 <- glm(PsychAggress ~ HIscore + Age + Sex + PovStat + WRATtotal, data=Stroop, family = "binomial")
summary(SCWTlog2)
## 
## Call:
## glm(formula = PsychAggress ~ HIscore + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Stroop)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2798   0.4236   0.5145   0.6025   0.8921  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.48268    1.17371   1.263   0.2065  
## HIscore       0.62656    0.95026   0.659   0.5097  
## Age          -0.02668    0.01441  -1.852   0.0640 .
## SexMen       -0.33190    0.24766  -1.340   0.1802  
## PovStatBelow  0.23283    0.28695   0.811   0.4171  
## WRATtotal     0.03072    0.01682   1.826   0.0678 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 449.84  on 540  degrees of freedom
## Residual deviance: 438.05  on 535  degrees of freedom
## AIC: 450.05
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog2)
##                     2.5 %      97.5 %
## (Intercept)  -0.803552777 3.807007178
## HIscore      -1.245798078 2.488498312
## Age          -0.055219621 0.001387377
## SexMen       -0.821089462 0.152635240
## PovStatBelow -0.316324569 0.813326850
## WRATtotal    -0.002734323 0.063417124
exp(cbind(OR = coef(SCWTlog2), confint(SCWTlog2)))
##                     OR     2.5 %    97.5 %
## (Intercept)  4.4047483 0.4477354 45.015514
## HIscore      1.8711605 0.2877112 12.043177
## Age          0.9736684 0.9462773  1.001388
## SexMen       0.7175609 0.4399521  1.164900
## PovStatBelow 1.2621678 0.7288229  2.255399
## WRATtotal    1.0311924 0.9972694  1.065471
plot(allEffects(SCWTlog2))

########Compare to null model 
#Difference in Deviance
with(SCWTlog2,null.deviance - deviance)
## [1] 11.79121
#Degrees of freedom for the difference between two models
with(SCWTlog2,df.null - df.residual)
## [1] 5
#p-value
with(SCWTlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.03776346

Model 3

SCWTlog3 <- glm(PsychAggress ~ (HIscore + Sex + PovStat)^3 + Age + WRATtotal, data=Stroop, family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (HIscore + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Stroop)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4000   0.4216   0.5111   0.5951   0.9187  
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                  1.46256    1.36088   1.075   0.2825  
## HIscore                      0.67780    1.59668   0.425   0.6712  
## SexMen                      -0.23111    1.14615  -0.202   0.8402  
## PovStatBelow                 0.01302    1.62888   0.008   0.9936  
## Age                         -0.02656    0.01446  -1.837   0.0662 .
## WRATtotal                    0.03177    0.01696   1.873   0.0610 .
## HIscore:SexMen              -0.40484    2.21338  -0.183   0.8549  
## HIscore:PovStatBelow         0.05517    3.18209   0.017   0.9862  
## SexMen:PovStatBelow         -0.13367    2.10088  -0.064   0.9493  
## HIscore:SexMen:PovStatBelow  1.08307    4.14946   0.261   0.7941  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 449.84  on 540  degrees of freedom
## Residual deviance: 437.39  on 531  degrees of freedom
## AIC: 457.39
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog3)
##                                    2.5 %      97.5 %
## (Intercept)                 -1.165263019 4.189108879
## HIscore                     -2.518183249 3.794475536
## SexMen                      -2.507598935 2.009977851
## PovStatBelow                -3.192792121 3.240740926
## Age                         -0.055203887 0.001612524
## WRATtotal                   -0.001913851 0.064799335
## HIscore:SexMen              -4.731676666 3.976659958
## HIscore:PovStatBelow        -6.052311844 6.516984144
## SexMen:PovStatBelow         -4.249369940 4.030441268
## HIscore:SexMen:PovStatBelow -7.206346203 9.135070138
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                                    OR        2.5 %      97.5 %
## (Intercept)                 4.3170040 0.3118406313   65.963983
## HIscore                     1.9695349 0.0806059147   44.454915
## SexMen                      0.7936522 0.0814636040    7.463152
## PovStatBelow                1.0131031 0.0410570744   25.552647
## Age                         0.9737890 0.9462921914    1.001614
## WRATtotal                   1.0322808 0.9980879789    1.066945
## HIscore:SexMen              0.6670817 0.0088116844   53.338583
## HIscore:PovStatBelow        1.0567185 0.0023524173  676.534973
## SexMen:PovStatBelow         0.8748749 0.0142732241   56.285743
## HIscore:SexMen:PovStatBelow 2.9537456 0.0007418628 9274.928128
plot(predictorEffect("HIscore",SCWTlog3))

########Compare to null model 
#Difference in Deviance
with(SCWTlog3,null.deviance - deviance)
## [1] 12.45958
#Degrees of freedom for the difference between two models
with(SCWTlog3,df.null - df.residual)
## [1] 9
#p-value
with(SCWTlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1886225

Compare Models 1,2, & 3

anova(SCWTlog1,SCWTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ HIscore
## Model 2: PsychAggress ~ HIscore + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       539     448.10                       
## 2       535     438.05  4    10.05  0.03959 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(SCWTlog2,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ HIscore + Age + Sex + PovStat + WRATtotal
## Model 2: PsychAggress ~ (HIscore + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       535     438.05                     
## 2       531     437.39  4  0.66837   0.9552
anova(SCWTlog1,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PsychAggress ~ HIscore
## Model 2: PsychAggress ~ (HIscore + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       539     448.10                     
## 2       531     437.39  8   10.719   0.2181

Suggested Model by Predictors

anova(SCWTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PsychAggress
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                  540     449.84           
## HIscore              1   1.7407       539     448.10  0.18705  
## Sex                  1   2.3295       538     445.77  0.12694  
## PovStat              1   0.7180       537     445.06  0.39679  
## Age                  1   3.7545       536     441.30  0.05267 .
## WRATtotal            1   3.2485       535     438.05  0.07149 .
## HIscore:Sex          1   0.0020       534     438.05  0.96452  
## HIscore:PovStat      1   0.1008       533     437.95  0.75083  
## Sex:PovStat          1   0.4977       532     437.45  0.48051  
## HIscore:Sex:PovStat  1   0.0678       531     437.39  0.79450  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SCWTlog4 <- glm(PsychAggress ~ HIscore, data=Stroop, family = "binomial")
summary(SCWTlog4)
## 
## Call:
## glm(formula = PsychAggress ~ HIscore, family = "binomial", data = Stroop)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1581   0.5161   0.5480   0.5782   0.7187  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   1.1499     0.4743   2.425   0.0153 *
## HIscore       1.2230     0.9230   1.325   0.1852  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 449.84  on 540  degrees of freedom
## Residual deviance: 448.10  on 539  degrees of freedom
## AIC: 452.1
## 
## Number of Fisher Scoring iterations: 4
plot(allEffects(SCWTlog4))

Stroop Color-Word Test - Physical Assault

Model 1

SCWTlog1 <- glm(PhysAssault ~ HIscore, data=Stroop,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ HIscore, family = "binomial", data = Stroop)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.4962  -0.4901  -0.4888  -0.4873   2.0971  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -2.03041    0.55047  -3.688 0.000226 ***
## HIscore     -0.06363    1.04522  -0.061 0.951455    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 381.12  on 540  degrees of freedom
## Residual deviance: 381.11  on 539  degrees of freedom
## AIC: 385.11
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                 2.5 %    97.5 %
## (Intercept) -3.148671 -0.987511
## HIscore     -2.090665  2.011360
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                    OR      2.5 %    97.5 %
## (Intercept) 0.1312816 0.04290911 0.3725027
## HIscore     0.9383495 0.12360494 7.4734715
########Compare to null model 
#Difference in Deviance
with(SCWTlog1,null.deviance - deviance)
## [1] 0.003703459
#Degrees of freedom for the difference between two models
with(SCWTlog1,df.null - df.residual)
## [1] 1
#p-value
with(SCWTlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.9514738

Model 2

SCWTlog2 <- glm(PhysAssault ~ HIscore + Age + Sex + PovStat + WRATtotal, data=Stroop, family = "binomial")
summary(SCWTlog2)
## 
## Call:
## glm(formula = PhysAssault ~ HIscore + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Stroop)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8337  -0.5227  -0.4382  -0.3630   2.4610  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.56392    1.36920  -1.142   0.2534  
## HIscore      -0.71323    1.13322  -0.629   0.5291  
## Age          -0.03107    0.01611  -1.929   0.0538 .
## SexMen       -0.28621    0.28153  -1.017   0.3093  
## PovStatBelow  0.64215    0.29072   2.209   0.0272 *
## WRATtotal     0.02638    0.02144   1.230   0.2186  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 381.12  on 540  degrees of freedom
## Residual deviance: 368.40  on 535  degrees of freedom
## AIC: 380.4
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog2)
##                    2.5 %       97.5 %
## (Intercept)  -4.28681197 1.0938703854
## HIscore      -2.92965977 1.5190711122
## Age          -0.06319529 0.0001295182
## SexMen       -0.84831765 0.2601640470
## PovStatBelow  0.06679474 1.2106481058
## WRATtotal    -0.01428789 0.0700105028
exp(cbind(OR = coef(SCWTlog2), confint(SCWTlog2)))
##                     OR      2.5 %   97.5 %
## (Intercept)  0.2093136 0.01374869 2.985808
## HIscore      0.4900590 0.05341521 4.567980
## Age          0.9694083 0.93876012 1.000130
## SexMen       0.7511040 0.42813460 1.297143
## PovStatBelow 1.9005549 1.06907601 3.355659
## WRATtotal    1.0267327 0.98581370 1.072519
########Compare to null model 
#Difference in Deviance
with(SCWTlog2,null.deviance - deviance)
## [1] 12.72144
#Degrees of freedom for the difference between two models
with(SCWTlog2,df.null - df.residual)
## [1] 5
#p-value
with(SCWTlog2,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.02613384

Model 3

SCWTlog3 <- glm(PhysAssault ~ (HIscore + Sex + PovStat)^3 + Age + WRATtotal, data=Stroop, family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (HIscore + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Stroop)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8328  -0.5473  -0.4372  -0.3347   2.5457  
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                 -2.35283    1.63275  -1.441   0.1496  
## HIscore                      0.81880    1.96754   0.416   0.6773  
## SexMen                       1.93488    1.54059   1.256   0.2091  
## PovStatBelow                 0.46270    1.65923   0.279   0.7803  
## Age                         -0.03060    0.01613  -1.897   0.0579 .
## WRATtotal                    0.02818    0.02136   1.320   0.1870  
## HIscore:SexMen              -4.89935    2.99915  -1.634   0.1023  
## HIscore:PovStatBelow        -0.12944    3.08404  -0.042   0.9665  
## SexMen:PovStatBelow         -1.19694    2.29936  -0.521   0.6027  
## HIscore:SexMen:PovStatBelow  3.60078    4.40845   0.817   0.4140  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 381.12  on 540  degrees of freedom
## Residual deviance: 364.11  on 531  degrees of freedom
## AIC: 384.11
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                                    2.5 %       97.5 %
## (Intercept)                  -5.66028700 7.612328e-01
## HIscore                      -2.91692385 4.814069e+00
## SexMen                       -1.11014656 4.983019e+00
## PovStatBelow                 -2.80026941 3.748583e+00
## Age                          -0.06277306 6.609005e-04
## WRATtotal                    -0.01236495 7.163728e-02
## HIscore:SexMen              -10.87277984 9.322144e-01
## HIscore:PovStatBelow         -6.29086794 5.861839e+00
## SexMen:PovStatBelow          -5.75139161 3.307767e+00
## HIscore:SexMen:PovStatBelow  -4.97623370 1.235623e+01
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                                       OR        2.5 %       97.5 %
## (Intercept)                  0.095099264 3.481518e-03 2.140914e+00
## HIscore                      2.267767101 5.409985e-02 1.232321e+02
## SexMen                       6.923235436 3.295107e-01 1.459143e+02
## PovStatBelow                 1.588353575 6.079368e-02 4.246086e+01
## Age                          0.969860480 9.391566e-01 1.000661e+00
## WRATtotal                    1.028585429 9.877112e-01 1.074266e+00
## HIscore:SexMen               0.007451393 1.896757e-05 2.540128e+00
## HIscore:PovStatBelow         0.878583000 1.853151e-03 3.513697e+02
## SexMen:PovStatBelow          0.302118182 3.178355e-03 2.732405e+01
## HIscore:SexMen:PovStatBelow 36.626830786 6.900001e-03 2.324028e+05
interact_plot(model = SCWTlog3, pred = HIscore, modx = Sex)

sim_slopes(SCWTlog3, pred = HIscore, modx = Sex, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of HIscore when Sex = Men: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -3.02   1.76    -1.72   0.09
## 
## Slope of HIscore when Sex = Women: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.78   1.56     0.50   0.62
########Compare to null model 
#Difference in Deviance
with(SCWTlog3,null.deviance - deviance)
## [1] 17.01248
#Degrees of freedom for the difference between two models
with(SCWTlog3,df.null - df.residual)
## [1] 9
#p-value
with(SCWTlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.04852095

Compare Models 1,2, & 3

anova(SCWTlog1,SCWTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ HIscore
## Model 2: PhysAssault ~ HIscore + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       539     381.11                       
## 2       535     368.40  4   12.718  0.01274 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(SCWTlog2,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ HIscore + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (HIscore + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       535     368.40                     
## 2       531     364.11  4    4.291    0.368
anova(SCWTlog2,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ HIscore + Age + Sex + PovStat + WRATtotal
## Model 2: PhysAssault ~ (HIscore + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       535     368.40                     
## 2       531     364.11  4    4.291    0.368
anova(SCWTlog3,SCWTlog2,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ (HIscore + Sex + PovStat)^3 + Age + WRATtotal
## Model 2: PhysAssault ~ HIscore + Age + Sex + PovStat + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       531     364.11                     
## 2       535     368.40 -4   -4.291    0.368
anova(SCWTlog1,SCWTlog3,test = "LR")
## Analysis of Deviance Table
## 
## Model 1: PhysAssault ~ HIscore
## Model 2: PhysAssault ~ (HIscore + Sex + PovStat)^3 + Age + WRATtotal
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       539     381.11                       
## 2       531     364.11  8   17.009  0.03002 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suggested Model by Predictors

anova(SCWTlog3, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: PhysAssault
## 
## Terms added sequentially (first to last)
## 
## 
##                     Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
## NULL                                  540     381.12           
## HIscore              1   0.0037       539     381.11  0.95147  
## Sex                  1   1.5311       538     379.58  0.21595  
## PovStat              1   5.6270       537     373.96  0.01769 *
## Age                  1   3.9789       536     369.98  0.04607 *
## WRATtotal            1   1.5807       535     368.40  0.20866  
## HIscore:Sex          1   2.0632       534     366.33  0.15089  
## HIscore:PovStat      1   0.3813       533     365.95  0.53692  
## Sex:PovStat          1   1.1743       532     364.78  0.27852  
## HIscore:Sex:PovStat  1   0.6722       531     364.11  0.41228  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SCWTlog4 <- glm(PhysAssault ~ PovStat + Age, data=Stroop, family = "binomial")
summary(SCWTlog4)
## 
## Call:
## glm(formula = PhysAssault ~ PovStat + Age, family = "binomial", 
##     data = Stroop)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7229  -0.5215  -0.4464  -0.3765   2.3812  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.83926    0.73667  -1.139   0.2546  
## PovStatBelow  0.57643    0.28196   2.044   0.0409 *
## Age          -0.03142    0.01561  -2.012   0.0442 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 381.12  on 540  degrees of freedom
## Residual deviance: 371.17  on 538  degrees of freedom
## AIC: 377.17
## 
## Number of Fisher Scoring iterations: 5